This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Bare Metal Platforms

1 - Digital Rebar

In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes using an existing digital rebar deployment.

Prerequisites

Creating a Cluster

In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes. We assume an existing digital rebar deployment, and some familiarity with iPXE.

We leave it up to the user to decide if they would like to use static networking, or DHCP. The setup and configuration of DHCP will not be covered.

Create the Machine Configuration Files

Generating Base Configurations

Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig

The loadbalancer is used to distribute the load across multiple controlplane nodes. This isn’t covered in detail, because we asume some loadbalancing knowledge before hand. If you think this should be added to the docs, please create a issue.

At this point, you can modify the generated configs to your liking.

Validate the Configuration Files

$ talosctl validate --config init.yaml --mode metal
init.yaml is valid for metal mode
$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config join.yaml --mode metal
join.yaml is valid for metal mode

Publishing the Machine Configuration Files

Digital Rebar has a build-in fileserver, which means we can use this feature to expose the talos configuration files. We will place init.yaml, controlplane.yaml, and worker.yaml into Digital Rebar file server by using the drpcli tools.

Copy the generated files from the step above into your Digital Rebar installation.

drpcli file upload <file>.yaml as <file>.yaml

Replacing <file> with init, controlplane or worker.

Download the boot files

Download a recent version of boot.tar.gz from github.

Upload to DRB:

$ drpcli isos upload boot.tar.gz as talos.tar.gz
{
  "Path": "talos.tar.gz",
  "Size": 96470072
}

We have some Digital Rebar example files in the Git repo you can use to provision Digital Rebar with drpcli.

To apply these configs you need to create them, and then apply them as follow:

$ drpcli bootenvs create talos
{
  "Available": true,
  "BootParams": "",
  "Bundle": "",
  "Description": "",
  "Documentation": "",
  "Endpoint": "",
  "Errors": [],
  "Initrds": [],
  "Kernel": "",
  "Meta": {},
  "Name": "talos",
  "OS": {
    "Codename": "",
    "Family": "",
    "IsoFile": "",
    "IsoSha256": "",
    "IsoUrl": "",
    "Name": "",
    "SupportedArchitectures": {},
    "Version": ""
  },
  "OnlyUnknown": false,
  "OptionalParams": [],
  "ReadOnly": false,
  "RequiredParams": [],
  "Templates": [],
  "Validated": true
}
drpcli bootenvs update talos - < bootenv.yaml

You need to do this for all files in the example directory. If you don’t have access to the drpcli tools you can also use the webinterface.

It’s important to have a corresponding SHA256 hash matching the boot.tar.gz

Bootenv BootParams

We’re using some of Digital Rebar build in templating to make sure the machine gets the correct role assigned.

talos.platform=metal talos.config={{ .ProvisionerURL }}/files/{{.Param \"talos/role\"}}.yaml"

This is why we also include a params.yaml in the example directory to make sure the role is set to one of the following:

  • controlplane
  • init
  • worker

The {{.Param \"talos/role\"}} then gets populated with one of the above roles.

Boot the Machines

In the UI of Digital Rebar you need to select the machines you want te provision. Once selected, you need to assign to following:

  • Profile
  • Workflow

This will provision the Stage and Bootenv with the talos values. Once this is done, you can boot the machine.

To understand the boot process, we have a higher level overview located at metal overview.

Retrieve the kubeconfig

Once everything is running we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>
talosctl --talosconfig talosconfig kubeconfig .

2 - Equinix Metal

Creating Talos cluster using Equinix Metal.

Prerequisites

This guide assumes the user has a working API token, the Equinix Metal CLI installed, and some familiarity with the CLI.

Network Booting

To install Talos to a server a working TFTP and iPXE server are needed. How this is done varies and is left as an exercise for the user. In general this requires a Talos kernel vmlinuz and initramfs. These assets can be downloaded from a given release.

Special Considerations

PXE Boot Kernel Parameters

The following is a list of kernel parameters required by Talos:

  • talos.platform: set this to packet
  • init_on_alloc=1: required by KSPP
  • init_on_free=1: required by KSPP
  • slab_nomerge: required by KSPP
  • pti=on: required by KSPP

User Data

To configure a Talos you can use the metadata service provide by Equinix Metal. It is required to add a shebang to the top of the configuration file. The shebang is arbitrary in the case of Talos, and the convention we use is #!talos.

Creating a Cluster via the Equinix Metal CLI

Control Plane Endpoint

The strategy used for an HA cluster varies and is left as an exercise for the user. Some of the known ways are:

  • DNS
  • Load Balancer
  • BPG

Create the Machine Configuration Files

Generating Base Configurations

Using the DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-k8s-aws-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig

Now add the required shebang (e.g. #!talos) at the top of init.yaml, controlplane.yaml, and join.yaml At this point, you can modify the generated configs to your liking.

Validate the Configuration Files

talosctl validate --config init.yaml --mode metal
talosctl validate --config controlplane.yaml --mode metal
talosctl validate --config join.yaml --mode metal

Note: Validation of the install disk could potentially fail as the validation is performed on you local machine and the specified disk may not exist.

Create the Bootstrap Node

packet device create \
  --project-id $PROJECT_ID \
  --facility $FACILITY \
  --ipxe-script-url $PXE_SERVER \
  --operating-system "custom_ipxe" \
  --plan $PLAN\
  --hostname $HOSTNAME\
  --userdata-file init.yaml

Create the Remaining Control Plane Nodes

packet device create \
  --project-id $PROJECT_ID \
  --facility $FACILITY \
  --ipxe-script-url $PXE_SERVER \
  --operating-system "custom_ipxe" \
  --plan $PLAN\
  --hostname $HOSTNAME\
  --userdata-file controlplane.yaml

Note: The above should be invoked at least twice in order for etcd to form quorum.

Create the Worker Nodes

packet device create \
  --project-id $PROJECT_ID \
  --facility $FACILITY \
  --ipxe-script-url $PXE_SERVER \
  --operating-system "custom_ipxe" \
  --plan $PLAN\
  --hostname $HOSTNAME\
  --userdata-file join.yaml

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>
talosctl --talosconfig talosconfig kubeconfig .

3 - Matchbox

In this guide we will create an HA Kubernetes cluster with 3 worker nodes using an existing load balancer and matchbox deployment.

Creating a Cluster

In this guide we will create an HA Kubernetes cluster with 3 worker nodes. We assume an existing load balancer, matchbox deployment, and some familiarity with iPXE.

We leave it up to the user to decide if they would like to use static networking, or DHCP. The setup and configuration of DHCP will not be covered.

Create the Machine Configuration Files

Generating Base Configurations

Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created init.yaml
created controlplane.yaml
created join.yaml
created talosconfig

At this point, you can modify the generated configs to your liking.

Validate the Configuration Files

$ talosctl validate --config init.yaml --mode metal
init.yaml is valid for metal mode
$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config join.yaml --mode metal
join.yaml is valid for metal mode

Publishing the Machine Configuration Files

In bare-metal setups it is up to the user to provide the configuration files over HTTP(S). A special kernel parameter (talos.config) must be used to inform Talos about where it should retreive its’ configuration file. To keep things simple we will place init.yaml, controlplane.yaml, and join.yaml into Matchbox’s assets directory. This directory is automatically served by Matchbox.

Create the Matchbox Configuration Files

The profiles we will create will reference vmlinuz, and initramfs.xz. Download these files from the release of your choice, and place them in /var/lib/matchbox/assets.

Profiles

The Bootstrap Node
{
  "id": "init",
  "name": "init",
  "boot": {
    "kernel": "/assets/vmlinuz",
    "initrd": ["/assets/initramfs.xz"],
    "args": [
      "initrd=initramfs.xz",
      "init_on_alloc=1",
      "init_on_free=1",
      "slab_nomerge",
      "pti=on",
      "console=tty0",
      "console=ttyS0",
      "printk.devkmsg=on",
      "talos.platform=metal",
      "talos.config=http://matchbox.talos.dev/assets/init.yaml"
    ]
  }
}

Note: Be sure to change http://matchbox.talos.dev to the endpoint of your matchbox server.

Additional Control Plane Nodes
{
  "id": "control-plane",
  "name": "control-plane",
  "boot": {
    "kernel": "/assets/vmlinuz",
    "initrd": ["/assets/initramfs.xz"],
    "args": [
      "initrd=initramfs.xz",
      "init_on_alloc=1",
      "init_on_free=1",
      "slab_nomerge",
      "pti=on",
      "console=tty0",
      "console=ttyS0",
      "printk.devkmsg=on",
      "talos.platform=metal",
      "talos.config=http://matchbox.talos.dev/assets/controlplane.yaml"
    ]
  }
}
Worker Nodes
{
  "id": "default",
  "name": "default",
  "boot": {
    "kernel": "/assets/vmlinuz",
    "initrd": ["/assets/initramfs.xz"],
    "args": [
      "initrd=initramfs.xz",
      "init_on_alloc=1",
      "init_on_free=1",
      "slab_nomerge",
      "pti=on",
      "console=tty0",
      "console=ttyS0",
      "printk.devkmsg=on",
      "talos.platform=metal",
      "talos.config=http://matchbox.talos.dev/assets/join.yaml"
    ]
  }
}

Groups

Now, create the following groups, and ensure that the selectors are accurate for your specific setup.

{
  "id": "control-plane-1",
  "name": "control-plane-1",
  "profile": "init",
  "selector": {
    ...
  }
}
{
  "id": "control-plane-2",
  "name": "control-plane-2",
  "profile": "control-plane",
  "selector": {
    ...
  }
}
{
  "id": "control-plane-3",
  "name": "control-plane-3",
  "profile": "control-plane",
  "selector": {
    ...
  }
}
{
  "id": "default",
  "name": "default",
  "profile": "default"
}

Boot the Machines

Now that we have our configuraton files in place, boot all the machines. Talos will come up on each machine, grab its’ configuration file, and bootstrap itself.

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>
talosctl --talosconfig talosconfig kubeconfig .

4 - Sidero

Sidero is a project created by the Talos team that has native support for Talos.

Sidero is a project created by the Talos team that has native support for Talos. The best way to get started with Sidero is to visit the website.