1 - Bare Metal Platforms

Installation of Talos Linux on various bare-metal platforms.

1.1 - Digital Rebar

In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes using an existing digital rebar deployment.

Prerequisites

Creating a Cluster

In this guide we will create an Kubernetes cluster with 1 worker node, and 2 controlplane nodes. We assume an existing digital rebar deployment, and some familiarity with iPXE.

We leave it up to the user to decide if they would like to use static networking, or DHCP. The setup and configuration of DHCP will not be covered.

Create the Machine Configuration Files

Generating Base Configurations

Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created controlplane.yaml
created worker.yaml
created talosconfig

The loadbalancer is used to distribute the load across multiple controlplane nodes. This isn’t covered in detail, because we assume some loadbalancing knowledge before hand. If you think this should be added to the docs, please create a issue.

At this point, you can modify the generated configs to your liking. Optionally, you can specify --config-patch with RFC6902 jsonpatch which will be applied during the config generation.

Validate the Configuration Files

$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config worker.yaml --mode metal
worker.yaml is valid for metal mode

Publishing the Machine Configuration Files

Digital Rebar has a built-in fileserver, which means we can use this feature to expose the talos configuration files. We will place controlplane.yaml, and worker.yaml into Digital Rebar file server by using the drpcli tools.

Copy the generated files from the step above into your Digital Rebar installation.

drpcli file upload <file>.yaml as <file>.yaml

Replacing <file> with controlplane or worker.

Download the boot files

Download a recent version of boot.tar.gz from github.

Upload to DRB:

$ drpcli isos upload boot.tar.gz as talos.tar.gz
{
  "Path": "talos.tar.gz",
  "Size": 96470072
}

We have some Digital Rebar example files in the Git repo you can use to provision Digital Rebar with drpcli.

To apply these configs you need to create them, and then apply them as follow:

$ drpcli bootenvs create talos
{
  "Available": true,
  "BootParams": "",
  "Bundle": "",
  "Description": "",
  "Documentation": "",
  "Endpoint": "",
  "Errors": [],
  "Initrds": [],
  "Kernel": "",
  "Meta": {},
  "Name": "talos",
  "OS": {
    "Codename": "",
    "Family": "",
    "IsoFile": "",
    "IsoSha256": "",
    "IsoUrl": "",
    "Name": "",
    "SupportedArchitectures": {},
    "Version": ""
  },
  "OnlyUnknown": false,
  "OptionalParams": [],
  "ReadOnly": false,
  "RequiredParams": [],
  "Templates": [],
  "Validated": true
}
drpcli bootenvs update talos - < bootenv.yaml

You need to do this for all files in the example directory. If you don’t have access to the drpcli tools you can also use the webinterface.

It’s important to have a corresponding SHA256 hash matching the boot.tar.gz

Bootenv BootParams

We’re using some of Digital Rebar built in templating to make sure the machine gets the correct role assigned.

talos.platform=metal talos.config={{ .ProvisionerURL }}/files/{{.Param \"talos/role\"}}.yaml"

This is why we also include a params.yaml in the example directory to make sure the role is set to one of the following:

  • controlplane
  • worker

The {{.Param \"talos/role\"}} then gets populated with one of the above roles.

Boot the Machines

In the UI of Digital Rebar you need to select the machines you want to provision. Once selected, you need to assign to following:

  • Profile
  • Workflow

This will provision the Stage and Bootenv with the talos values. Once this is done, you can boot the machine.

Bootstrap Etcd

To configure talosctl we will need the first control plane node’s IP:

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

1.2 - Equinix Metal

Creating Talos clusters with Equinix Metal.

You can create a Talos Linux cluster on Equinix Metal in a variety of ways, such as through the EM web UI, or the metal command line tool.

Regardless of the method, the process is:

  • Create a DNS entry for your Kubernetes endpoint.
  • Generate the configurations using talosctl.
  • Provision your machines on Equinix Metal.
  • Push the configurations to your servers (if not done as part of the machine provisioning).
  • Configure your Kubernetes endpoint to point to the newly created control plane nodes.
  • Bootstrap the cluster.

Define the Kubernetes Endpoint

There are a variety of ways to create an HA endpoint for the Kubernetes cluster. Some of the ways are:

  • DNS
  • Load Balancer
  • BGP

Whatever way is chosen, it should result in an IP address/DNS name that routes traffic to all the control plane nodes. We do not know the control plane node IP addresses at this stage, but we should define the endpoint DNS entry so that we can use it in creating the cluster configuration. After the nodes are provisioned, we can use their addresses to create the endpoint A records, or bind them to the load balancer, etc.

Create the Machine Configuration Files

Generating Configurations

Using the DNS name of the loadbalancer defined above, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-k8s-em-tutorial https://<load balancer IP or DNS>:<port>
created controlplane.yaml
created worker.yaml
created talosconfig

The port used above should be 6443, unless your load balancer maps a different port to port 6443 on the control plane nodes.

Validate the Configuration Files

talosctl validate --config controlplane.yaml --mode metal
talosctl validate --config worker.yaml --mode metal

Note: Validation of the install disk could potentially fail as validation is performed on your local machine and the specified disk may not exist.

Passing in the configuration as User Data

You can use the metadata service provide by Equinix Metal to pass in the machines configuration. It is required to add a shebang to the top of the configuration file.

The convention we use is #!talos.

Provision the machines in Equinix Metal

Talos Linux can be PXE-booted on Equinix Metal using Image Factory, using the equinixMetal platform: e.g. https://pxe.factory.talos.dev/pxe/376567988ad370138ad8b2698212367b8edcb69b5fd68c80be1f2ec7d603b4ba/v1.8.0-alpha.0/equinixMetal-amd64 (this URL references the default schematic and amd64 architecture).

Follow the Image Factory guide to create a custom schematic, e.g. with CPU microcode updates. The PXE boot URL can be used as the iPXE script URL.

Using the Equinix Metal UI

Simply select the location and type of machines in the Equinix Metal web interface. Select ‘Custom iPXE’ as the Operating System and enter the Image Factory PXE URL as the iPXE script URL, then select the number of servers to create, and name them (in lowercase only.) Under optional settings, you can optionally paste in the contents of controlplane.yaml that was generated, above (ensuring you add a first line of #!talos).

You can repeat this process to create machines of different types for control plane and worker nodes (although you would pass in worker.yaml for the worker nodes, as user data).

If you did not pass in the machine configuration as User Data, you need to provide it to each machine, with the following command:

talosctl apply-config --insecure --nodes <Node IP> --file ./controlplane.yaml

Creating a Cluster via the Equinix Metal CLI

This guide assumes the user has a working API token,and the Equinix Metal CLI installed.

Note: Ensure you have prepended #!talos to the controlplane.yaml file.

metal device create \
  --project-id $PROJECT_ID \
  --facility $FACILITY \
  --operating-system "custom_ipxe" \
  --ipxe-script-url "https://pxe.factory.talos.dev/pxe/376567988ad370138ad8b2698212367b8edcb69b5fd68c80be1f2ec7d603b4ba/v1.8.0-alpha.0/equinixMetal-amd64" \
  --plan $PLAN\
  --hostname $HOSTNAME\
  --userdata-file controlplane.yaml

e.g. metal device create -p <projectID> -f da11 -O custom_ipxe -P c3.small.x86 -H steve.test.11 --userdata-file ./controlplane.yaml --ipxe-script-url "https://pxe.factory.talos.dev/pxe/376567988ad370138ad8b2698212367b8edcb69b5fd68c80be1f2ec7d603b4ba/v1.8.0-alpha.0/equinixMetal-amd64"

Repeat this to create each control plane node desired: there should usually be 3 for a HA cluster.

Update the Kubernetes endpoint

Now our control plane nodes have been created, and we know their IP addresses, we can associate them with the Kubernetes endpoint. Configure your load balancer to route traffic to these nodes, or add A records to your DNS entry for the endpoint, for each control plane node. e.g.

host endpoint.mydomain.com
endpoint.mydomain.com has address 145.40.90.201
endpoint.mydomain.com has address 147.75.109.71
endpoint.mydomain.com has address 145.40.90.177

Bootstrap Etcd

Set the endpoints and nodes for talosctl:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

This only needs to be issued to one control plane node.

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

1.3 - ISO

Booting Talos on bare-metal with ISO.

Talos can be installed on bare-metal machine using an ISO image. ISO images for amd64 and arm64 architectures are available on the Talos releases page.

Talos doesn’t install itself to disk when booted from an ISO until the machine configuration is applied.

Please follow the getting started guide for the generic steps on how to install Talos.

Note: If there is already a Talos installation on the disk, the machine will boot into that installation when booting from a Talos ISO. The boot order should prefer disk over ISO, or the ISO should be removed after the installation to make Talos boot from disk.

See kernel parameters reference for the list of kernel parameters supported by Talos.

There are two flavors of ISO images available:

  • metal-<arch>.iso supports booting on BIOS and UEFI systems (for x86, UEFI only for arm64)
  • metal-<arch>-secureboot.iso supports booting on only UEFI systems in SecureBoot mode (via Image Factory)

1.4 - Matchbox

In this guide we will create an HA Kubernetes cluster with 3 worker nodes using an existing load balancer and matchbox deployment.

Creating a Cluster

In this guide we will create an HA Kubernetes cluster with 3 worker nodes. We assume an existing load balancer, matchbox deployment, and some familiarity with iPXE.

We leave it up to the user to decide if they would like to use static networking, or DHCP. The setup and configuration of DHCP will not be covered.

Create the Machine Configuration Files

Generating Base Configurations

Using the DNS name of the load balancer, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-k8s-metal-tutorial https://<load balancer IP or DNS>:<port>
created controlplane.yaml
created worker.yaml
created talosconfig

At this point, you can modify the generated configs to your liking. Optionally, you can specify --config-patch with RFC6902 jsonpatch which will be applied during the config generation.

Validate the Configuration Files

$ talosctl validate --config controlplane.yaml --mode metal
controlplane.yaml is valid for metal mode
$ talosctl validate --config worker.yaml --mode metal
worker.yaml is valid for metal mode

Publishing the Machine Configuration Files

In bare-metal setups it is up to the user to provide the configuration files over HTTP(S). A special kernel parameter (talos.config) must be used to inform Talos about where it should retrieve its configuration file. To keep things simple we will place controlplane.yaml, and worker.yaml into Matchbox’s assets directory. This directory is automatically served by Matchbox.

Create the Matchbox Configuration Files

The profiles we will create will reference vmlinuz, and initramfs.xz. Download these files from the release of your choice, and place them in /var/lib/matchbox/assets.

Profiles

Control Plane Nodes
{
  "id": "control-plane",
  "name": "control-plane",
  "boot": {
    "kernel": "/assets/vmlinuz",
    "initrd": ["/assets/initramfs.xz"],
    "args": [
      "initrd=initramfs.xz",
      "init_on_alloc=1",
      "slab_nomerge",
      "pti=on",
      "console=tty0",
      "console=ttyS0",
      "printk.devkmsg=on",
      "talos.platform=metal",
      "talos.config=http://matchbox.talos.dev/assets/controlplane.yaml"
    ]
  }
}

Note: Be sure to change http://matchbox.talos.dev to the endpoint of your matchbox server.

Worker Nodes
{
  "id": "default",
  "name": "default",
  "boot": {
    "kernel": "/assets/vmlinuz",
    "initrd": ["/assets/initramfs.xz"],
    "args": [
      "initrd=initramfs.xz",
      "init_on_alloc=1",
      "slab_nomerge",
      "pti=on",
      "console=tty0",
      "console=ttyS0",
      "printk.devkmsg=on",
      "talos.platform=metal",
      "talos.config=http://matchbox.talos.dev/assets/worker.yaml"
    ]
  }
}

Groups

Now, create the following groups, and ensure that the selectors are accurate for your specific setup.

{
  "id": "control-plane-1",
  "name": "control-plane-1",
  "profile": "control-plane",
  "selector": {
    ...
  }
}
{
  "id": "control-plane-2",
  "name": "control-plane-2",
  "profile": "control-plane",
  "selector": {
    ...
  }
}
{
  "id": "control-plane-3",
  "name": "control-plane-3",
  "profile": "control-plane",
  "selector": {
    ...
  }
}
{
  "id": "default",
  "name": "default",
  "profile": "default"
}

Boot the Machines

Now that we have our configuration files in place, boot all the machines. Talos will come up on each machine, grab its configuration file, and bootstrap itself.

Bootstrap Etcd

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

1.5 - Network Configuration

In this guide we will describe how network can be configured on bare-metal platforms.

By default, Talos will run DHCP client on all interfaces which have a link, and that might be enough for most of the cases. If some advanced network configuration is required, it can be done via the machine configuration file.

But sometimes it is required to apply network configuration even before the machine configuration can be fetched from the network.

Kernel Command Line

Talos supports some kernel command line parameters to configure network before the machine configuration is fetched.

Note: Kernel command line parameters are not persisted after Talos installation, so proper network configuration should be done via the machine configuration.

Address, default gateway and DNS servers can be configured via ip= kernel command line parameter:

ip=172.20.0.2::172.20.0.1:255.255.255.0::eth0.100:::::

Bonding can be configured via bond= kernel command line parameter:

bond=bond0:eth0,eth1:balance-rr

VLANs can be configured via vlan= kernel command line parameter:

vlan=eth0.100:eth0

See kernel parameters reference for more details.

Platform Network Configuration

Some platforms (e.g. AWS, Google Cloud, etc.) have their own network configuration mechanisms, which can be used to perform the initial network configuration. There is no such mechanism for bare-metal platforms, so Talos provides a way to use platform network config on the metal platform to submit the initial network configuration.

The platform network configuration is a YAML document which contains resource specifications for various network resources. For the metal platform, the interactive dashboard can be used to edit the platform network configuration, also the configuration can be created manually.

The current value of the platform network configuration can be retrieved using the MetaKeys resource (key 0xa):

talosctl get meta 0xa

The platform network configuration can be updated using the talosctl meta command for the running node:

talosctl meta write 0xa '{"externalIPs": ["1.2.3.4"]}'
talosctl meta delete 0xa

The initial platform network configuration for the metal platform can be also included into the generated Talos image:

docker run --rm -i ghcr.io/siderolabs/imager:v1.8.0-alpha.0 iso --arch amd64 --tar-to-stdout --meta 0xa='{...}' | tar xz
docker run --rm -i --privileged ghcr.io/siderolabs/imager:v1.8.0-alpha.0 image --platform metal --arch amd64 --tar-to-stdout --meta 0xa='{...}' | tar xz

The platform network configuration gets merged with other sources of network configuration, the details can be found in the network resources guide.

1.6 - PXE

Booting Talos over the network on bare-metal with PXE.

Talos can be installed on bare-metal using PXE service. There are two more detailed guides for PXE booting using Matchbox and Digital Rebar.

This guide describes generic steps for PXE booting Talos on bare-metal.

First, download the vmlinuz and initramfs assets from the Talos releases page. Set up the machines to PXE boot from the network (usually by setting the boot order in the BIOS). There might be options specific to the hardware being used, booting in BIOS or UEFI mode, using iPXE, etc.

Talos requires the following kernel parameters to be set on the initial boot:

  • talos.platform=metal
  • slab_nomerge
  • pti=on

When booted from the network without machine configuration, Talos will start in maintenance mode.

Please follow the getting started guide for the generic steps on how to install Talos.

See kernel parameters reference for the list of kernel parameters supported by Talos.

Note: If there is already a Talos installation on the disk, the machine will boot into that installation when booting from network. The boot order should prefer disk over network.

Talos can automatically fetch the machine configuration from the network on the initial boot using talos.config kernel parameter. A metadata service (HTTP service) can be implemented to deliver customized configuration to each node for example by using the MAC address of the node:

talos.config=https://metadata.service/talos/config?mac=${mac}

Note: The talos.config kernel parameter supports other substitution variables, see kernel parameters reference for the full list.

PXE booting can be also performed via Image Factory.

1.7 - SecureBoot

Booting Talos in SecureBoot mode on UEFI platforms.

Talos now supports booting on UEFI systems in SecureBoot mode. When combined with TPM-based disk encryption, this provides Trusted Boot experience.

Note: SecureBoot is not supported on x86 platforms in BIOS mode.

The implementation is using systemd-boot as a boot menu implementation, while the Talos kernel, initramfs and cmdline arguments are combined into the Unified Kernel Image (UKI) format. UEFI firmware loads the systemd-boot bootloader, which then loads the UKI image. Both systemd-boot and Talos UKI image are signed with the key, which is enrolled into the UEFI firmware.

As Talos Linux is fully contained in the UKI image, the full operating system is verified and booted by the UEFI firmware.

Note: There is no support at the moment to upgrade non-UKI (GRUB-based) Talos installation to use UKI/SecureBoot, so a fresh installation is required.

SecureBoot with Sidero Labs Images

Sidero Labs provides Talos images signed with the Sidero Labs SecureBoot key via Image Factory.

Note: The SecureBoot images are available for Talos releases starting from v1.5.0.

The easiest way to get started with SecureBoot is to download the ISO, and boot it on a UEFI-enabled system which has SecureBoot enabled in setup mode.

The ISO bootloader will enroll the keys in the UEFI firmware, and boot the Talos Linux in SecureBoot mode. The install should performed using SecureBoot installer (put it Talos machine configuration): factory.talos.dev/installer-secureboot/376567988ad370138ad8b2698212367b8edcb69b5fd68c80be1f2ec7d603b4ba:v1.8.0-alpha.0.

Note: SecureBoot images can also be generated with custom keys.

Booting Talos Linux in SecureBoot Mode

In this guide we will use the ISO image to boot Talos Linux in SecureBoot mode, followed by submitting machine configuration to the machine in maintenance mode. We will use one the ways to generate and submit machine configuration to the node, please refer to the Production Notes for the full guide.

First, make sure SecureBoot is enabled in the UEFI firmware. For the first boot, the UEFI firmware should be in the setup mode, so that the keys can be enrolled into the UEFI firmware automatically. If the UEFI firmware does not support automatic enrollment, you may need to hit Esc to force the boot menu to appear, and select the Enroll Secure Boot keys: auto option.

Note: There are other ways to enroll the keys into the UEFI firmware, but this is out of scope of this guide.

Once Talos is running in maintenance mode, verify that secure boot is enabled:

$ talosctl -n <IP> get securitystate --insecure
NODE   NAMESPACE   TYPE            ID              VERSION   SECUREBOOT
       runtime     SecurityState   securitystate   1         true

Now we will generate the machine configuration for the node supplying the installer-secureboot container image, and applying the patch to enable TPM-based disk encryption (requires TPM 2.0):

# tpm-disk-encryption.yaml
machine:
  systemDiskEncryption:
    ephemeral:
      provider: luks2
      keys:
        - slot: 0
          tpm: {}
    state:
      provider: luks2
      keys:
        - slot: 0
          tpm: {}

Generate machine configuration:

talosctl gen config <cluster-name> https://<endpoint>:6443 --install-image=factory.talos.dev/installer-secureboot/376567988ad370138ad8b2698212367b8edcb69b5fd68c80be1f2ec7d603b4ba:v1.8.0-alpha.0 --install-disk=/dev/sda --config-patch @tpm-disk-encryption.yaml

Apply machine configuration to the node:

talosctl -n <IP> apply-config --insecure -f controlplane.yaml

Talos will perform the installation to the disk and reboot the node. Please make sure that the ISO image is not attached to the node anymore, otherwise the node will boot from the ISO image again.

Once the node is rebooted, verify that the node is running in secure boot mode:

talosctl -n <IP> --talosconfig=talosconfig get securitystate

Upgrading Talos Linux

Any change to the boot asset (kernel, initramfs, kernel command line) requires the UKI to be regenerated and the installer image to be rebuilt. Follow the steps above to generate new installer image updating the boot assets: use new Talos version, add a system extension, or modify the kernel command line. Once the new installer image is pushed to the registry, upgrade the node using the new installer image.

It is important to preserve the UKI signing key and the PCR signing key, otherwise the node will not be able to boot with the new UKI and unlock the encrypted partitions.

Disk Encryption with TPM

When encrypting the disk partition for the first time, Talos Linux generates a random disk encryption key and seals (encrypts) it with the TPM device. The TPM unlock policy is configured to trust the expected policy signed by the PCR signing key. This way TPM unlocking doesn’t depend on the exact PCR measurements, but rather on the expected policy signed by the PCR signing key and the state of SecureBoot (PCR 7 measurement, including secureboot status and the list of enrolled keys).

When the UKI image is generated, the UKI is measured and expected measurements are combined into TPM unlock policy and signed with the PCR signing key. During the boot process, systemd-stub component of the UKI performs measurements of the UKI sections into the TPM device. Talos Linux during the boot appends to the PCR register the measurements of the boot phases, and once the boot reaches the point of mounting the encrypted disk partition, the expected signed policy from the UKI is matched against measured values to unlock the TPM, and TPM unseals the disk encryption key which is then used to unlock the disk partition.

During the upgrade, as long as the new UKI is contains PCR policy signed with the same PCR signing key, and SecureBoot state has not changed the disk partition will be unlocked successfully.

Disk encryption is also tied to the state of PCR register 7, so that it unlocks only if SecureBoot is enabled and the set of enrolled keys hasn’t changed.

Other Boot Options

Unified Kernel Image (UKI) is a UEFI-bootable image which can be booted directly from the UEFI firmware skipping the systemd-boot bootloader. In network boot mode, the UKI can be used directly as well, as it contains the full set of boot assets required to boot Talos Linux.

When SecureBoot is enabled, the UKI image ignores any kernel command line arguments passed to it, but rather uses the kernel command line arguments embedded into the UKI image itself. If kernel command line arguments need to be changed, the UKI image needs to be rebuilt with the new kernel command line arguments.

SecureBoot with Custom Keys

Generating the Keys

Talos requires two set of keys to be used for the SecureBoot process:

  • SecureBoot key is used to sign the boot assets and it is enrolled into the UEFI firmware.
  • PCR Signing Key is used to sign the TPM policy, which is used to seal the disk encryption key.

The same key might be used for both, but it is recommended to use separate keys for each purpose.

Talos provides a utility to generate the keys, but existing PKI infrastructure can be used as well:

$ talosctl gen secureboot uki --common-name "SecureBoot Key"
writing _out/uki-signing-cert.pem
writing _out/uki-signing-cert.der
writing _out/uki-signing-key.pem

The generated certificate and private key are written to disk in PEM-encoded format (RSA 4096-bit key). The certificate is also written in DER format for the systems which expect the certificate in DER format.

PCR signing key can be generated with:

$ talosctl gen secureboot pcr
writing _out/pcr-signing-key.pem

The file containing the private key is written to disk in PEM-encoded format (RSA 2048-bit key).

Optionally, UEFI automatic key enrollment database can be generated using the _out/uki-signing-* files as input:

$ talosctl gen secureboot database
writing _out/db.auth
writing _out/KEK.auth
writing _out/PK.auth

These files can be used to enroll the keys into the UEFI firmware automatically when booting from a SecureBoot ISO while UEFI firmware is in the setup mode.

Generating the SecureBoot Assets

Once the keys are generated, they can be used to sign the Talos boot assets to generate required ISO images, PXE boot assets, disk images, installer containers, etc. In this guide we will generate a SecureBoot ISO image and an installer image.

$ docker run --rm -t -v $PWD/_out:/secureboot:ro -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 secureboot-iso
profile ready:
arch: amd64
platform: metal
secureboot: true
version: v1.8.0-alpha.0
input:
  kernel:
    path: /usr/install/amd64/vmlinuz
  initramfs:
    path: /usr/install/amd64/initramfs.xz
  sdStub:
    path: /usr/install/amd64/systemd-stub.efi
  sdBoot:
    path: /usr/install/amd64/systemd-boot.efi
  baseInstaller:
    imageRef: ghcr.io/siderolabs/installer:v1.5.0-alpha.3-35-ge0f383598-dirty
  secureboot:
    signingKeyPath: /secureboot/uki-signing-key.pem
    signingCertPath: /secureboot/uki-signing-cert.pem
    pcrSigningKeyPath: /secureboot/pcr-signing-key.pem
    pcrPublicKeyPath: /secureboot/pcr-signing-public-key.pem
    platformKeyPath: /secureboot/PK.auth
    keyExchangeKeyPath: /secureboot/KEK.auth
    signatureKeyPath: /secureboot/db.auth
output:
  kind: iso
  outFormat: raw
skipped initramfs rebuild (no system extensions)
kernel command line: talos.platform=metal console=ttyS0 console=tty0 init_on_alloc=1 slab_nomerge pti=on consoleblank=0 nvme_core.io_timeout=4294967295 printk.devkmsg=on ima_template=ima-ng ima_appraise=fix ima_hash=sha512 lockdown=confidentiality
UKI ready
ISO ready
output asset path: /out/metal-amd64-secureboot.iso

Next, the installer image should be generated to install Talos to disk on a SecureBoot-enabled system:

$ docker run --rm -t -v $PWD/_out:/secureboot:ro -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 secureboot-installer
profile ready:
arch: amd64
platform: metal
secureboot: true
version: v1.8.0-alpha.0
input:
  kernel:
    path: /usr/install/amd64/vmlinuz
  initramfs:
    path: /usr/install/amd64/initramfs.xz
  sdStub:
    path: /usr/install/amd64/systemd-stub.efi
  sdBoot:
    path: /usr/install/amd64/systemd-boot.efi
  baseInstaller:
    imageRef: ghcr.io/siderolabs/installer:v1.8.0-alpha.0
  secureboot:
    signingKeyPath: /secureboot/uki-signing-key.pem
    signingCertPath: /secureboot/uki-signing-cert.pem
    pcrSigningKeyPath: /secureboot/pcr-signing-key.pem
    pcrPublicKeyPath: /secureboot/pcr-signing-public-key.pem
    platformKeyPath: /secureboot/PK.auth
    keyExchangeKeyPath: /secureboot/KEK.auth
    signatureKeyPath: /secureboot/db.auth
output:
  kind: installer
  outFormat: raw
skipped initramfs rebuild (no system extensions)
kernel command line: talos.platform=metal console=ttyS0 console=tty0 init_on_alloc=1 slab_nomerge pti=on consoleblank=0 nvme_core.io_timeout=4294967295 printk.devkmsg=on ima_template=ima-ng ima_appraise=fix ima_hash=sha512 lockdown=confidentiality
UKI ready
installer container image ready
output asset path: /out/installer-amd64-secureboot.tar

The generated container image should be pushed to some container registry which Talos can access during the installation, e.g.:

crane push _out/installer-amd64-secureboot.tar ghcr.io/<user>/installer-amd64-secureboot:v1.8.0-alpha.0

The generated ISO and installer images might be further customized with system extensions, extra kernel command line arguments, etc.

2 - Virtualized Platforms

Installation of Talos Linux for virtualization platforms.

2.1 - Hyper-V

Creating a Talos Kubernetes cluster using Hyper-V.

Pre-requisities

  1. Download the latest metal-amd64.iso ISO from github releases page
  2. Create a New-TalosVM folder in any of your PS Module Path folders $env:PSModulePath -split ';' and save the New-TalosVM.psm1 there

Plan Overview

Here we will create a basic 3 node cluster with a single control-plane node and two worker nodes. The only difference between control plane and worker node is the amount of RAM and an additional storage VHD. This is personal preference and can be configured to your liking.

We are using a VMNamePrefix argument for a VM Name prefix and not the full hostname. This command will find any existing VM with that prefix and “+1” the highest suffix it finds. For example, if VMs talos-cp01 and talos-cp02 exist, this will create VMs starting from talos-cp03, depending on NumberOfVMs argument.

Setup a Control Plane Node

Use the following command to create a single control plane node:

New-TalosVM -VMNamePrefix talos-cp -CPUCount 2 -StartupMemory 4GB -SwitchName LAB -TalosISOPath C:\ISO\metal-amd64.iso -NumberOfVMs 1 -VMDestinationBasePath 'D:\Virtual Machines\Test VMs\Talos'

This will create talos-cp01 VM and power it on.

Setup Worker Nodes

Use the following command to create 2 worker nodes:

New-TalosVM -VMNamePrefix talos-worker -CPUCount 4 -StartupMemory 8GB -SwitchName LAB -TalosISOPath C:\ISO\metal-amd64.iso -NumberOfVMs 2 -VMDestinationBasePath 'D:\Virtual Machines\Test VMs\Talos' -StorageVHDSize 50GB

This will create two VMs: talos-worker01 and talos-wworker02 and attach an additional VHD of 50GB for storage (which in my case will be passed to Mayastor).

Pushing Config to the Nodes

Now that our VMs are ready, find their IP addresses from console of VM. With that information, push config to the control plane node with:

# set control plane IP variable
$CONTROL_PLANE_IP='10.10.10.x'

# Generate talos config
talosctl gen config talos-cluster https://$($CONTROL_PLANE_IP):6443 --output-dir .

# Apply config to control plane node
talosctl apply-config --insecure --nodes $CONTROL_PLANE_IP --file .\controlplane.yaml

Pushing Config to Worker Nodes

Similarly, for the workers:

talosctl apply-config --insecure --nodes 10.10.10.x --file .\worker.yaml

Apply the config to both nodes.

Bootstrap Cluster

Now that our nodes are ready, we are ready to bootstrap the Kubernetes cluster.

# Use following command to set node and endpoint permanantly in config so you dont have to type it everytime
talosctl config endpoint $CONTROL_PLANE_IP
talosctl config node $CONTROL_PLANE_IP

# Bootstrap cluster
talosctl bootstrap

# Generate kubeconfig
talosctl kubeconfig .

This will generate the kubeconfig file, you can use to connect to the cluster.

2.2 - KVM

Talos is known to work on KVM.

We don’t yet have a documented guide specific to KVM; however, you can have a look at our Vagrant & Libvirt guide which uses KVM for virtualization.

If you run into any issues, our community can probably help!

2.3 - OpenNebula

Talos is known to work on OpenNebula.

2.4 - Proxmox

Creating Talos Kubernetes cluster using Proxmox.

In this guide we will create a Kubernetes cluster using Proxmox.

Video Walkthrough

To see a live demo of this writeup, visit Youtube here:

Installation

How to Get Proxmox

It is assumed that you have already installed Proxmox onto the server you wish to create Talos VMs on. Visit the Proxmox downloads page if necessary.

Install talosctl

You can download talosctl an MacOS and Linux via:

brew install siderolabs/tap/talosctl

For manually installation and other platform please see the talosctl installation guide.

Download ISO Image

In order to install Talos in Proxmox, you will need the ISO image from the Talos release page. You can download metal-amd64.iso via github.com/siderolabs/talos/releases

mkdir -p _out/
curl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/metal-<arch>.iso -L -o _out/metal-<arch>.iso

For example version v1.8.0-alpha.0 for linux platform:

mkdir -p _out/
curl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/metal-amd64.iso -L -o _out/metal-amd64.iso

QEMU guest agent support (iso)

  • If you need the QEMU guest agent so you can do guest VM shutdowns of your Talos VMs, then you will need a custom ISO
  • To get this, navigate to https://factory.talos.dev/
  • Scroll down and select your Talos version (v1.8.0-alpha.0 for example)
  • Then tick the box for siderolabs/qemu-guest-agent and submit
  • This will provide you with a link to the bare metal ISO
  • The lines we’re interested in are as follows
Metal ISO

amd64 ISO
    https://factory.talos.dev/image/ce4c980550dd2ab1b17bbf2b08801c7eb59418eafe8f279833297925d67c7515/v1.8.0-alpha.0/metal-amd64.iso
arm64 ISO
    https://factory.talos.dev/image/ce4c980550dd2ab1b17bbf2b08801c7eb59418eafe8f279833297925d67c7515/v1.8.0-alpha.0/metal-arm64.iso

Installer Image

For the initial Talos install or upgrade use the following installer image:
factory.talos.dev/installer/ce4c980550dd2ab1b17bbf2b08801c7eb59418eafe8f279833297925d67c7515:v1.8.0-alpha.0
  • Download the above ISO (this will most likely be amd64 for you)
  • Take note of the factory.talos.dev/installer URL as you’ll need it later

Upload ISO

From the Proxmox UI, select the “local” storage and enter the “Content” section. Click the “Upload” button:

Select the ISO you downloaded previously, then hit “Upload”

Create VMs

Before starting, familiarise yourself with the system requirements for Talos and assign VM resources accordingly.

Create a new VM by clicking the “Create VM” button in the Proxmox UI:

Fill out a name for the new VM:

In the OS tab, select the ISO we uploaded earlier:

Keep the defaults set in the “System” tab.

Keep the defaults in the “Hard Disk” tab as well, only changing the size if desired.

In the “CPU” section, give at least 2 cores to the VM:

Note: As of Talos v1.0 (which requires the x86-64-v2 microarchitecture), prior to Proxmox V8.0, booting with the default Processor Type kvm64 will not work. You can enable the required CPU features after creating the VM by adding the following line in the corresponding /etc/pve/qemu-server/<vmid>.conf file:

args: -cpu kvm64,+cx16,+lahf_lm,+popcnt,+sse3,+ssse3,+sse4.1,+sse4.2

Alternatively, you can set the Processor Type to host if your Proxmox host supports these CPU features, this however prevents using live VM migration.

Verify that the RAM is set to at least 2GB:

Keep the default values for networking, verifying that the VM is set to come up on the bridge interface:

Finish creating the VM by clicking through the “Confirm” tab and then “Finish”.

Repeat this process for a second VM to use as a worker node. You can also repeat this for additional nodes desired.

Note: Talos doesn’t support memory hot plugging, if creating the VM programmatically don’t enable memory hotplug on your Talos VM’s. Doing so will cause Talos to be unable to see all available memory and have insufficient memory to complete installation of the cluster.

Start Control Plane Node

Once the VMs have been created and updated, start the VM that will be the first control plane node. This VM will boot the ISO image specified earlier and enter “maintenance mode”.

With DHCP server

Once the machine has entered maintenance mode, there will be a console log that details the IP address that the node received. Take note of this IP address, which will be referred to as $CONTROL_PLANE_IP for the rest of this guide. If you wish to export this IP as a bash variable, simply issue a command like export CONTROL_PLANE_IP=1.2.3.4.

Without DHCP server

To apply the machine configurations in maintenance mode, VM has to have IP on the network. So you can set it on boot time manually.

Press e on the boot time. And set the IP parameters for the VM. Format is:

ip=<client-ip>:<srv-ip>:<gw-ip>:<netmask>:<host>:<device>:<autoconf>

For example $CONTROL_PLANE_IP will be 192.168.0.100 and gateway 192.168.0.1

linux /boot/vmlinuz init_on_alloc=1 slab_nomerge pti=on panic=0 consoleblank=0 printk.devkmsg=on earlyprintk=ttyS0 console=tty0 console=ttyS0 talos.platform=metal ip=192.168.0.100::192.168.0.1:255.255.255.0::eth0:off

Then press Ctrl-x or F10

Generate Machine Configurations

With the IP address above, you can now generate the machine configurations to use for installing Talos and Kubernetes. Issue the following command, updating the output directory, cluster name, and control plane IP as you see fit:

talosctl gen config talos-proxmox-cluster https://$CONTROL_PLANE_IP:6443 --output-dir _out

This will create several files in the _out directory: controlplane.yaml, worker.yaml, and talosconfig.

Note: The Talos config by default will install to /dev/sda. Depending on your setup the virtual disk may be mounted differently Eg: /dev/vda. You can check for disks running the following command:

talosctl disks --insecure --nodes $CONTROL_PLANE_IP

Update controlplane.yaml and worker.yaml config files to point to the correct disk location.

QEMU guest agent support

For QEMU guest agent support, you can generate the config with the custom install image:

talosctl gen config talos-proxmox-cluster https://$CONTROL_PLANE_IP:6443 --output-dir _out --install-image factory.talos.dev/installer/ce4c980550dd2ab1b17bbf2b08801c7eb59418eafe8f279833297925d67c7515:v1.8.0-alpha.0
  • In Proxmox, go to your VM –> Options and ensure that QEMU Guest Agent is Enabled
  • The QEMU agent is now configured

Create Control Plane Node

Using the controlplane.yaml generated above, you can now apply this config using talosctl. Issue:

talosctl apply-config --insecure --nodes $CONTROL_PLANE_IP --file _out/controlplane.yaml

You should now see some action in the Proxmox console for this VM. Talos will be installed to disk, the VM will reboot, and then Talos will configure the Kubernetes control plane on this VM.

Note: This process can be repeated multiple times to create an HA control plane.

Create Worker Node

Create at least a single worker node using a process similar to the control plane creation above. Start the worker node VM and wait for it to enter “maintenance mode”. Take note of the worker node’s IP address, which will be referred to as $WORKER_IP

Issue:

talosctl apply-config --insecure --nodes $WORKER_IP --file _out/worker.yaml

Note: This process can be repeated multiple times to add additional workers.

Using the Cluster

Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster. For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace. To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.

First, configure talosctl to talk to your control plane node by issuing the following, updating paths and IPs as necessary:

export TALOSCONFIG="_out/talosconfig"
talosctl config endpoint $CONTROL_PLANE_IP
talosctl config node $CONTROL_PLANE_IP

Bootstrap Etcd

talosctl bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl kubeconfig .

Cleaning Up

To cleanup, simply stop and delete the virtual machines from the Proxmox UI.

2.5 - Vagrant & Libvirt

Pre-requisities

  1. Linux OS
  2. Vagrant installed
  3. vagrant-libvirt plugin installed
  4. talosctl installed
  5. kubectl installed

Overview

We will use Vagrant and its libvirt plugin to create a KVM-based cluster with 3 control plane nodes and 1 worker node.

For this, we will mount Talos ISO into the VMs using a virtual CD-ROM, and configure the VMs to attempt to boot from the disk first with the fallback to the CD-ROM.

We will also configure a virtual IP address on Talos to achieve high-availability on kube-apiserver.

Preparing the environment

First, we download the latest metal-amd64.iso ISO from GitHub releases into the /tmp directory.

wget --timestamping https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/metal-amd64.iso -O /tmp/metal-amd64.iso

Create a Vagrantfile with the following contents:

Vagrant.configure("2") do |config|
  config.vm.define "control-plane-node-1" do |vm|
    vm.vm.provider :libvirt do |domain|
      domain.cpus = 2
      domain.memory = 2048
      domain.serial :type => "file", :source => {:path => "/tmp/control-plane-node-1.log"}
      domain.storage :file, :device => :cdrom, :path => "/tmp/metal-amd64.iso"
      domain.storage :file, :size => '4G', :type => 'raw'
      domain.boot 'hd'
      domain.boot 'cdrom'
    end
  end

  config.vm.define "control-plane-node-2" do |vm|
    vm.vm.provider :libvirt do |domain|
      domain.cpus = 2
      domain.memory = 2048
      domain.serial :type => "file", :source => {:path => "/tmp/control-plane-node-2.log"}
      domain.storage :file, :device => :cdrom, :path => "/tmp/metal-amd64.iso"
      domain.storage :file, :size => '4G', :type => 'raw'
      domain.boot 'hd'
      domain.boot 'cdrom'
    end
  end

  config.vm.define "control-plane-node-3" do |vm|
    vm.vm.provider :libvirt do |domain|
      domain.cpus = 2
      domain.memory = 2048
      domain.serial :type => "file", :source => {:path => "/tmp/control-plane-node-3.log"}
      domain.storage :file, :device => :cdrom, :path => "/tmp/metal-amd64.iso"
      domain.storage :file, :size => '4G', :type => 'raw'
      domain.boot 'hd'
      domain.boot 'cdrom'
    end
  end

  config.vm.define "worker-node-1" do |vm|
    vm.vm.provider :libvirt do |domain|
      domain.cpus = 1
      domain.memory = 1024
      domain.serial :type => "file", :source => {:path => "/tmp/worker-node-1.log"}
      domain.storage :file, :device => :cdrom, :path => "/tmp/metal-amd64.iso"
      domain.storage :file, :size => '4G', :type => 'raw'
      domain.boot 'hd'
      domain.boot 'cdrom'
    end
  end
end

Bring up the nodes

Check the status of vagrant VMs:

vagrant status

You should see the VMs in “not created” state:

Current machine states:

control-plane-node-1      not created (libvirt)
control-plane-node-2      not created (libvirt)
control-plane-node-3      not created (libvirt)
worker-node-1             not created (libvirt)

Bring up the vagrant environment:

vagrant up --provider=libvirt

Check the status again:

vagrant status

Now you should see the VMs in “running” state:

Current machine states:

control-plane-node-1      running (libvirt)
control-plane-node-2      running (libvirt)
control-plane-node-3      running (libvirt)
worker-node-1             running (libvirt)

Find out the IP addresses assigned by the libvirt DHCP by running:

virsh list | grep vagrant | awk '{print $2}' | xargs -t -L1 virsh domifaddr

Output will look like the following:

virsh domifaddr vagrant_control-plane-node-2
 Name       MAC address          Protocol     Address
-------------------------------------------------------------------------------
 vnet0      52:54:00:f9:10:e5    ipv4         192.168.121.119/24

virsh domifaddr vagrant_control-plane-node-1
 Name       MAC address          Protocol     Address
-------------------------------------------------------------------------------
 vnet1      52:54:00:0f:ae:59    ipv4         192.168.121.203/24

virsh domifaddr vagrant_worker-node-1
 Name       MAC address          Protocol     Address
-------------------------------------------------------------------------------
 vnet2      52:54:00:6f:28:95    ipv4         192.168.121.69/24

virsh domifaddr vagrant_control-plane-node-3
 Name       MAC address          Protocol     Address
-------------------------------------------------------------------------------
 vnet3      52:54:00:03:45:10    ipv4         192.168.121.125/24

Our control plane nodes have the IPs: 192.168.121.203, 192.168.121.119, 192.168.121.125 and the worker node has the IP 192.168.121.69.

Now you should be able to interact with Talos nodes that are in maintenance mode:

talosctl -n 192.168.121.203 disks --insecure

Sample output:

DEV        MODEL   SERIAL   TYPE   UUID   WWID   MODALIAS                    NAME   SIZE     BUS_PATH
/dev/vda   -       -        HDD    -      -      virtio:d00000002v00001AF4   -      8.6 GB   /pci0000:00/0000:00:03.0/virtio0/

Installing Talos

Pick an endpoint IP in the vagrant-libvirt subnet but not used by any nodes, for example 192.168.121.100.

Generate a machine configuration:

talosctl gen config my-cluster https://192.168.121.100:6443 --install-disk /dev/vda

Edit controlplane.yaml to add the virtual IP you picked to a network interface under .machine.network.interfaces, for example:

machine:
  network:
    interfaces:
      - interface: eth0
        dhcp: true
        vip:
          ip: 192.168.121.100

Apply the configuration to the initial control plane node:

talosctl -n 192.168.121.203 apply-config --insecure --file controlplane.yaml

You can tail the logs of the node:

sudo tail -f /tmp/control-plane-node-1.log

Set up your shell to use the generated talosconfig and configure its endpoints (use the IPs of the control plane nodes):

export TALOSCONFIG=$(realpath ./talosconfig)
talosctl config endpoint 192.168.121.203 192.168.121.119 192.168.121.125

Bootstrap the Kubernetes cluster from the initial control plane node:

talosctl -n 192.168.121.203 bootstrap

Finally, apply the machine configurations to the remaining nodes:

talosctl -n 192.168.121.119 apply-config --insecure --file controlplane.yaml
talosctl -n 192.168.121.125 apply-config --insecure --file controlplane.yaml
talosctl -n 192.168.121.69 apply-config --insecure --file worker.yaml

After a while, you should see that all the members have joined:

talosctl -n 192.168.121.203 get members

The output will be like the following:

NODE              NAMESPACE   TYPE     ID                      VERSION   HOSTNAME                MACHINE TYPE   OS               ADDRESSES
192.168.121.203   cluster     Member   talos-192-168-121-119   1         talos-192-168-121-119   controlplane   Talos (v1.1.0)   ["192.168.121.119"]
192.168.121.203   cluster     Member   talos-192-168-121-69    1         talos-192-168-121-69    worker         Talos (v1.1.0)   ["192.168.121.69"]
192.168.121.203   cluster     Member   talos-192-168-121-203   6         talos-192-168-121-203   controlplane   Talos (v1.1.0)   ["192.168.121.100","192.168.121.203"]
192.168.121.203   cluster     Member   talos-192-168-121-125   1         talos-192-168-121-125   controlplane   Talos (v1.1.0)   ["192.168.121.125"]

Interacting with Kubernetes cluster

Retrieve the kubeconfig from the cluster:

talosctl -n 192.168.121.203 kubeconfig ./kubeconfig

List the nodes in the cluster:

kubectl --kubeconfig ./kubeconfig get node -owide

You will see an output similar to:

NAME                    STATUS   ROLES                  AGE     VERSION   INTERNAL-IP       EXTERNAL-IP   OS-IMAGE         KERNEL-VERSION   CONTAINER-RUNTIME
talos-192-168-121-203   Ready    control-plane,master   3m10s   v1.24.2   192.168.121.203   <none>        Talos (v1.1.0)   5.15.48-talos    containerd://1.6.6
talos-192-168-121-69    Ready    <none>                 2m25s   v1.24.2   192.168.121.69    <none>        Talos (v1.1.0)   5.15.48-talos    containerd://1.6.6
talos-192-168-121-119   Ready    control-plane,master   8m46s   v1.24.2   192.168.121.119   <none>        Talos (v1.1.0)   5.15.48-talos    containerd://1.6.6
talos-192-168-121-125   Ready    control-plane,master   3m11s   v1.24.2   192.168.121.125   <none>        Talos (v1.1.0)   5.15.48-talos    containerd://1.6.6

Congratulations, you have a highly-available Talos cluster running!

Cleanup

You can destroy the vagrant environment by running:

vagrant destroy -f

And remove the ISO image you downloaded:

sudo rm -f /tmp/metal-amd64.iso

2.6 - VMware

Creating Talos Kubernetes cluster using VMware.

Creating a Cluster via the govc CLI

In this guide we will create an HA Kubernetes cluster with 2 worker nodes. We will use the govc cli which can be downloaded here.

Prereqs/Assumptions

This guide will use the virtual IP (“VIP”) functionality that is built into Talos in order to provide a stable, known IP for the Kubernetes control plane. This simply means the user should pick an IP on their “VM Network” to designate for this purpose and keep it handy for future steps.

Create the Machine Configuration Files

Generating Base Configurations

Using the VIP chosen in the prereq steps, we will now generate the base configuration files for the Talos machines. This can be done with the talosctl gen config ... command. Take note that we will also use a JSON6902 patch when creating the configs so that the control plane nodes get some special information about the VIP we chose earlier, as well as a daemonset to install vmware tools on talos nodes.

First, download cp.patch.yaml to your local machine and edit the VIP to match your chosen IP. You can do this by issuing: curl -fsSLO https://raw.githubusercontent.com/siderolabs/talos/master/website/content/v1.8/talos-guides/install/virtualized-platforms/vmware/cp.patch.yaml. It’s contents should look like the following:

- op: add
  path: /machine/network
  value:
    interfaces:
    - interface: eth0
      dhcp: true
      vip:
        ip: <VIP>
- op: replace
  path: /cluster/extraManifests
  value:
    - "https://raw.githubusercontent.com/siderolabs/talos-vmtoolsd/master/deploy/latest.yaml"

With the patch in hand, generate machine configs with:

$ talosctl gen config vmware-test https://<VIP>:<port> --config-patch-control-plane @cp.patch.yaml
created controlplane.yaml
created worker.yaml
created talosconfig

At this point, you can modify the generated configs to your liking if needed. Optionally, you can specify additional patches by adding to the cp.patch.yaml file downloaded earlier, or create your own patch files.

Validate the Configuration Files

$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config worker.yaml --mode cloud
worker.yaml is valid for cloud mode

Set Environment Variables

govc makes use of the following environment variables

export GOVC_URL=<vCenter url>
export GOVC_USERNAME=<vCenter username>
export GOVC_PASSWORD=<vCenter password>

Note: If your vCenter installation makes use of self signed certificates, you’ll want to export GOVC_INSECURE=true.

There are some additional variables that you may need to set:

export GOVC_DATACENTER=<vCenter datacenter>
export GOVC_RESOURCE_POOL=<vCenter resource pool>
export GOVC_DATASTORE=<vCenter datastore>
export GOVC_NETWORK=<vCenter network>

Choose Install Approach

As part of this guide, we have a more automated install script that handles some of the complexity of importing OVAs and creating VMs. If you wish to use this script, we will detail that next. If you wish to carry out the manual approach, simply skip ahead to the “Manual Approach” section.

Scripted Install

Download the vmware.sh script to your local machine. You can do this by issuing curl -fsSLO "https://raw.githubusercontent.com/siderolabs/talos/master/website/content/v1.8/talos-guides/install/virtualized-platforms/vmware/vmware.sh". This script has default variables for things like Talos version and cluster name that may be interesting to tweak before deploying.

Import OVA

To create a content library and import the Talos OVA corresponding to the mentioned Talos version, simply issue:

./vmware.sh upload_ova

Create Cluster

With the OVA uploaded to the content library, you can create a 5 node (by default) cluster with 3 control plane and 2 worker nodes:

./vmware.sh create

This step will create a VM from the OVA, edit the settings based on the env variables used for VM size/specs, then power on the VMs.

You may now skip past the “Manual Approach” section down to “Bootstrap Cluster”.

Manual Approach

Import the OVA into vCenter

A talos.ova asset is published with each release. We will refer to the version of the release as $TALOS_VERSION below. It can be easily exported with export TALOS_VERSION="v0.3.0-alpha.10" or similar.

curl -LO https://github.com/siderolabs/talos/releases/download/$TALOS_VERSION/talos.ova

Create a content library (if needed) with:

govc library.create <library name>

Import the OVA to the library with:

govc library.import -n talos-${TALOS_VERSION} <library name> /path/to/downloaded/talos.ova

Create the Bootstrap Node

We’ll clone the OVA to create the bootstrap node (our first control plane node).

govc library.deploy <library name>/talos-${TALOS_VERSION} control-plane-1

Talos makes use of the guestinfo facility of VMware to provide the machine/cluster configuration. This can be set using the govc vm.change command. To facilitate persistent storage using the vSphere cloud provider integration with Kubernetes, disk.enableUUID=1 is used.

govc vm.change \
  -e "guestinfo.talos.config=$(cat controlplane.yaml | base64)" \
  -e "disk.enableUUID=1" \
  -vm control-plane-1

Update Hardware Resources for the Bootstrap Node

  • -c is used to configure the number of cpus
  • -m is used to configure the amount of memory (in MB)
govc vm.change \
  -c 2 \
  -m 4096 \
  -vm control-plane-1

The following can be used to adjust the EPHEMERAL disk size.

govc vm.disk.change -vm control-plane-1 -disk.name disk-1000-0 -size 10G
govc vm.power -on control-plane-1

Create the Remaining Control Plane Nodes

govc library.deploy <library name>/talos-${TALOS_VERSION} control-plane-2
govc vm.change \
  -e "guestinfo.talos.config=$(base64 controlplane.yaml)" \
  -e "disk.enableUUID=1" \
  -vm control-plane-2

govc library.deploy <library name>/talos-${TALOS_VERSION} control-plane-3
govc vm.change \
  -e "guestinfo.talos.config=$(base64 controlplane.yaml)" \
  -e "disk.enableUUID=1" \
  -vm control-plane-3
govc vm.change \
  -c 2 \
  -m 4096 \
  -vm control-plane-2

govc vm.change \
  -c 2 \
  -m 4096 \
  -vm control-plane-3
govc vm.disk.change -vm control-plane-2 -disk.name disk-1000-0 -size 10G

govc vm.disk.change -vm control-plane-3 -disk.name disk-1000-0 -size 10G
govc vm.power -on control-plane-2

govc vm.power -on control-plane-3

Update Settings for the Worker Nodes

govc library.deploy <library name>/talos-${TALOS_VERSION} worker-1
govc vm.change \
  -e "guestinfo.talos.config=$(base64 worker.yaml)" \
  -e "disk.enableUUID=1" \
  -vm worker-1

govc library.deploy <library name>/talos-${TALOS_VERSION} worker-2
govc vm.change \
  -e "guestinfo.talos.config=$(base64 worker.yaml)" \
  -e "disk.enableUUID=1" \
  -vm worker-2
govc vm.change \
  -c 4 \
  -m 8192 \
  -vm worker-1

govc vm.change \
  -c 4 \
  -m 8192 \
  -vm worker-2
govc vm.disk.change -vm worker-1 -disk.name disk-1000-0 -size 10G

govc vm.disk.change -vm worker-2 -disk.name disk-1000-0 -size 10G
govc vm.power -on worker-1

govc vm.power -on worker-2

Bootstrap Cluster

In the vSphere UI, open a console to one of the control plane nodes. You should see some output stating that etcd should be bootstrapped. This text should look like:

"etcd is waiting to join the cluster, if this node is the first node in the cluster, please run `talosctl bootstrap` against one of the following IPs:

Take note of the IP mentioned here and issue:

talosctl --talosconfig talosconfig bootstrap -e <control plane IP> -n <control plane IP>

Keep this IP handy for the following steps as well.

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig config endpoint <control plane IP>
talosctl --talosconfig talosconfig config node <control plane IP>
talosctl --talosconfig talosconfig kubeconfig .

Configure talos-vmtoolsd

The talos-vmtoolsd application was deployed as a daemonset as part of the cluster creation; however, we must now provide a talos credentials file for it to use.

Create a new talosconfig with:

talosctl --talosconfig talosconfig -n <control plane IP> config new vmtoolsd-secret.yaml --roles os:admin

Create a secret from the talosconfig:

kubectl -n kube-system create secret generic talos-vmtoolsd-config \
  --from-file=talosconfig=./vmtoolsd-secret.yaml

Clean up the generated file from local system:

rm vmtoolsd-secret.yaml

Once configured, you should now see these daemonset pods go into “Running” state and in vCenter, you will now see IPs and info from the Talos nodes present in the UI.

2.7 - Xen

Talos is known to work on Xen. We don’t yet have a documented guide specific to Xen; however, you can follow the General Getting Started Guide. If you run into any issues, our community can probably help!

3 - Cloud Platforms

Installation of Talos Linux on many cloud platforms.

3.1 - Akamai

Creating a cluster via the CLI on Akamai Cloud (Linode).

Creating a Talos Linux Cluster on Akamai Connected Cloud via the CLI

This guide will demonstrate how to create a highly available Kubernetes cluster with one worker using the Akamai Connected Cloud provider.

Akamai Connected Cloud has a very well-documented REST API, and an open-source CLI tool to interact with the API which will be used in this guide. Make sure to follow installation and authentication instructions for the linode-cli tool.

jq and talosctl also needs to be installed

Upload image

Download the Akamai image akamai-amd64.raw.gz from the latest Talos release.

Upload the image

export REGION=us-ord

linode-cli image-upload --region ${REGION} --label talos akamai-amd64.raw.gz

Create a Load Balancer

export REGION=us-ord

linode-cli nodebalancers create --region ${REGION} --no-defaults --label talos
export NODEBALANCER_ID=$(linode-cli nodebalancers list --label talos --format id --text --no-headers)
linode-cli nodebalancers config-create --port 443 --protocol tcp --check connection ${NODEBALANCER_ID}

Create the Machine Configuration Files

Using the IP address (or DNS name, if you have created one) of the load balancer, generate the base configuration files for the Talos machines. Also note that the load balancer forwards port 443 to port 6443 on the associated nodes, so we should use 443 as the port in the config definition:

export NODEBALANCER_IP=$(linode-cli nodebalancers list --label talos --format ipv4 --text --no-headers)

talosctl gen config talos-kubernetes-akamai https://${NODEBALANCER_IP} --with-examples=false

Create the Linodes

Create the Control Plane Nodes

Although root passwords are not used by Talos, Linode requires that a root password be associated with a linode during creation.

Run the following commands to create three control plane nodes:

export IMAGE_ID=$(linode-cli images list --label talos --format id --text --no-headers)
export NODEBALANCER_ID=$(linode-cli nodebalancers list --label talos --format id --text --no-headers)
export NODEBALANCER_CONFIG_ID=$(linode-cli nodebalancers configs-list ${NODEBALANCER_ID} --format id --text --no-headers)
export REGION=us-ord
export LINODE_TYPE=g6-standard-4
export ROOT_PW=$(pwgen 16)

for id in $(seq 3); do
  linode_label="talos-control-plane-${id}"

  # create linode

  linode-cli linodes create  \
    --no-defaults \
    --root_pass ${ROOT_PW} \
    --type ${LINODE_TYPE} \
    --region ${REGION} \
    --image ${IMAGE_ID} \
    --label ${linode_label} \
    --private_ip true \
    --tags talos-control-plane \
    --group "talos-control-plane" \
    --metadata.user_data "$(base64 -i ./controlplane.yaml)"

  # change kernel to "direct disk"
  linode_id=$(linode-cli linodes list --label ${linode_label} --format id --text --no-headers)
  confiig_id=$(linode-cli linodes configs-list ${linode_id} --format id --text --no-headers)
  linode-cli linodes config-update ${linode_id} ${confiig_id} --kernel "linode/direct-disk"

  # add machine to nodebalancer
  private_ip=$(linode-cli linodes list --label ${linode_label} --format ipv4 --json | jq -r ".[0].ipv4[1]")
  linode-cli nodebalancers node-create ${NODEBALANCER_ID}  ${NODEBALANCER_CONFIG_ID}  --label ${linode_label} --address ${private_ip}:6443
done

Create the Worker Nodes

Although root passwords are not used by Talos, Linode requires that a root password be associated with a linode during creation.

Run the following to create a worker node:

export IMAGE_ID=$(linode-cli images list --label talos --format id --text --no-headers)
export REGION=us-ord
export LINODE_TYPE=g6-standard-4
export LINODE_LABEL="talos-worker-1"
export ROOT_PW=$(pwgen 16)

linode-cli linodes create  \
    --no-defaults \
    --root_pass ${ROOT_PW} \
    --type ${LINODE_TYPE} \
    --region ${REGION} \
    --image ${IMAGE_ID} \
    --label ${LINODE_LABEL} \
    --private_ip true \
    --tags talos-worker \
    --group "talos-worker" \
    --metadata.user_data "$(base64 -i ./worker.yaml)"

linode_id=$(linode-cli linodes list --label ${LINODE_LABEL} --format id --text --no-headers)
config_id=$(linode-cli linodes configs-list ${linode_id} --format id --text --no-headers)
linode-cli linodes config-update ${linode_id} ${config_id} --kernel "linode/direct-disk"

Bootstrap Etcd

Set the endpoints and nodes:

export LINODE_LABEL=talos-control-plane-1
export LINODE_IP=$(linode-cli linodes list --label ${LINODE_LABEL} --format ipv4 --json | jq -r ".[0].ipv4[0]")
talosctl --talosconfig talosconfig config endpoint ${LINODE_IP}
talosctl --talosconfig talosconfig config node ${LINODE_IP}

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point, we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

We can also watch the cluster bootstrap via:

talosctl --talosconfig talosconfig health

Alternatively, we can also watch the node overview, logs and real-time metrics dashboard via:

talosctl --talosconfig talosconfig dashboard

3.2 - AWS

Creating a cluster via the AWS CLI.

Creating a Cluster via the AWS CLI

In this guide we will create an HA Kubernetes cluster with 3 worker nodes. We assume an existing VPC, and some familiarity with AWS. If you need more information on AWS specifics, please see the official AWS documentation.

Set the needed info

Change to your desired region:

REGION="us-west-2"
aws ec2 describe-vpcs --region $REGION

VPC="(the VpcId from the above command)"

Create the Subnet

Use a CIDR block that is present on the VPC specified above.

aws ec2 create-subnet \
    --region $REGION \
    --vpc-id $VPC \
    --cidr-block ${CIDR_BLOCK}

Note the subnet ID that was returned, and assign it to a variable for ease of later use:

SUBNET="(the subnet ID of the created subnet)"

Official AMI Images

Official AMI image ID can be found in the cloud-images.json file attached to the Talos release:

AMI=`curl -sL https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/cloud-images.json | \
    jq -r '.[] | select(.region == "'$REGION'") | select (.arch == "amd64") | .id'`
echo $AMI

Replace amd64 in the line above with the desired architecture. Note the AMI id that is returned is assigned to an environment variable: it will be used later when booting instances.

If using the official AMIs, you can skip to Creating the Security group

Create your own AMIs

The use of the official Talos AMIs are recommended, but if you wish to build your own AMIs, follow the procedure below.

Create the S3 Bucket

aws s3api create-bucket \
    --bucket $BUCKET \
    --create-bucket-configuration LocationConstraint=$REGION \
    --acl private

Create the vmimport Role

In order to create an AMI, ensure that the vmimport role exists as described in the official AWS documentation.

Note that the role should be associated with the S3 bucket we created above.

Create the Image Snapshot

First, download the AWS image from a Talos release:

curl -L https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/aws-amd64.raw.xz | xz -d > disk.raw

Copy the RAW disk to S3 and import it as a snapshot:

aws s3 cp disk.raw s3://$BUCKET/talos-aws-tutorial.raw
aws ec2 import-snapshot \
    --region $REGION \
    --description "Talos kubernetes tutorial" \
    --disk-container "Format=raw,UserBucket={S3Bucket=$BUCKET,S3Key=talos-aws-tutorial.raw}"

Save the SnapshotId, as we will need it once the import is done. To check on the status of the import, run:

aws ec2 describe-import-snapshot-tasks \
    --region $REGION \
    --import-task-ids

Once the SnapshotTaskDetail.Status indicates completed, we can register the image.

Register the Image

aws ec2 register-image \
    --region $REGION \
    --block-device-mappings "DeviceName=/dev/xvda,VirtualName=talos,Ebs={DeleteOnTermination=true,SnapshotId=$SNAPSHOT,VolumeSize=4,VolumeType=gp2}" \
    --root-device-name /dev/xvda \
    --virtualization-type hvm \
    --architecture x86_64 \
    --ena-support \
    --name talos-aws-tutorial-ami

We now have an AMI we can use to create our cluster. Save the AMI ID, as we will need it when we create EC2 instances.

AMI="(AMI ID of the register image command)"

Create a Security Group

aws ec2 create-security-group \
    --region $REGION \
    --group-name talos-aws-tutorial-sg \
    --description "Security Group for EC2 instances to allow ports required by Talos"

SECURITY_GROUP="(security group id that is returned)"

Using the security group from above, allow all internal traffic within the same security group:

aws ec2 authorize-security-group-ingress \
    --region $REGION \
    --group-name talos-aws-tutorial-sg \
    --protocol all \
    --port 0 \
    --source-group talos-aws-tutorial-sg

and expose the Talos and Kubernetes APIs:

aws ec2 authorize-security-group-ingress \
    --region $REGION \
    --group-name talos-aws-tutorial-sg \
    --protocol tcp \
    --port 6443 \
    --cidr 0.0.0.0/0

aws ec2 authorize-security-group-ingress \
    --region $REGION \
    --group-name talos-aws-tutorial-sg \
    --protocol tcp \
    --port 50000-50001 \
    --cidr 0.0.0.0/0

If you are using KubeSpan and will be adding workers outside of AWS, you need to allow inbound UDP for the Wireguard port:

aws ec2 authorize-security-group-ingress \
    --region $REGION \
    --group-name talos-aws-tutorial-sg \
    --protocol udp --port 51820 --cidr 0.0.0.0/0

Create a Load Balancer

aws elbv2 create-load-balancer \
    --region $REGION \
    --name talos-aws-tutorial-lb \
    --type network --subnets $SUBNET

Take note of the DNS name and ARN. We will need these soon.

LOAD_BALANCER_ARN="(arn of the load balancer)"
aws elbv2 create-target-group \
    --region $REGION \
    --name talos-aws-tutorial-tg \
    --protocol TCP \
    --port 6443 \
    --target-type ip \
    --vpc-id $VPC

Also note the TargetGroupArn that is returned.

TARGET_GROUP_ARN="(target group arn)"

Create the Machine Configuration Files

Using the DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines.

Note that the port used here is the externally accessible port configured on the load balancer - 443 - not the internal port of 6443:

$ talosctl gen config talos-k8s-aws-tutorial https://<load balancer DNS>:<port> --with-examples=false --with-docs=false
created controlplane.yaml
created worker.yaml
created talosconfig

Note that the generated configs are too long for AWS userdata field if the --with-examples and --with-docs flags are not passed.

At this point, you can modify the generated configs to your liking.

Optionally, you can specify --config-patch with RFC6902 jsonpatch which will be applied during the config generation.

Validate the Configuration Files

$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config worker.yaml --mode cloud
worker.yaml is valid for cloud mode

Create the EC2 Instances

change the instance type if desired. Note: There is a known issue that prevents Talos from running on T2 instance types. Please use T3 if you need burstable instance types.

Create the Control Plane Nodes

CP_COUNT=1
while [[ "$CP_COUNT" -lt 4 ]]; do
  aws ec2 run-instances \
    --region $REGION \
    --image-id $AMI \
    --count 1 \
    --instance-type t3.small \
    --user-data file://controlplane.yaml \
    --subnet-id $SUBNET \
    --security-group-ids $SECURITY_GROUP \
    --associate-public-ip-address \
    --tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=talos-aws-tutorial-cp-$CP_COUNT}]"
  ((CP_COUNT++))
done

Make a note of the resulting PrivateIpAddress from the controlplane nodes for later use.

Create the Worker Nodes

aws ec2 run-instances \
    --region $REGION \
    --image-id $AMI \
    --count 3 \
    --instance-type t3.small \
    --user-data file://worker.yaml \
    --subnet-id $SUBNET \
    --security-group-ids $SECURITY_GROUP
    --tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=talos-aws-tutorial-worker}]"

Configure the Load Balancer

Now, using the load balancer target group’s ARN, and the PrivateIpAddress from the controlplane instances that you created :

aws elbv2 register-targets \
    --region $REGION \
    --target-group-arn $TARGET_GROUP_ARN \
    --targets Id=$CP_NODE_1_IP  Id=$CP_NODE_2_IP  Id=$CP_NODE_3_IP

Using the ARNs of the load balancer and target group from previous steps, create the listener:

aws elbv2 create-listener \
    --region $REGION \
    --load-balancer-arn $LOAD_BALANCER_ARN \
    --protocol TCP \
    --port 443 \
    --default-actions Type=forward,TargetGroupArn=$TARGET_GROUP_ARN

Bootstrap Etcd

Set the endpoints (the control plane node to which talosctl commands are sent) and nodes (the nodes that the command operates on):

talosctl --talosconfig talosconfig config endpoint <control plane 1 PUBLIC IP>
talosctl --talosconfig talosconfig config node <control plane 1 PUBLIC IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

The different control plane nodes should sendi/receive traffic via the load balancer, notice that one of the control plane has intiated the etcd cluster, and the others should join. You can now watch as your cluster bootstraps, by using

talosctl --talosconfig talosconfig  health

You can also watch the performance of a node, via:

talosctl --talosconfig talosconfig dashboard

And use standard kubectl commands.

3.3 - Azure

Creating a cluster via the CLI on Azure.

Creating a Cluster via the CLI

In this guide we will create an HA Kubernetes cluster with 1 worker node. We assume existing Blob Storage, and some familiarity with Azure. If you need more information on Azure specifics, please see the official Azure documentation.

Environment Setup

We’ll make use of the following environment variables throughout the setup. Edit the variables below with your correct information.

# Storage account to use
export STORAGE_ACCOUNT="StorageAccountName"

# Storage container to upload to
export STORAGE_CONTAINER="StorageContainerName"

# Resource group name
export GROUP="ResourceGroupName"

# Location
export LOCATION="centralus"

# Get storage account connection string based on info above
export CONNECTION=$(az storage account show-connection-string \
                    -n $STORAGE_ACCOUNT \
                    -g $GROUP \
                    -o tsv)

Choose an Image

There are two methods of deployment in this tutorial.

If you would like to use the official Talos image uploaded to Azure Community Galleries by SideroLabs, you may skip ahead to setting up your network infrastructure.

Otherwise, if you would like to upload your own image to Azure and use it to deploy Talos, continue to Creating an Image.

Create the Image

First, download the Azure image from a Talos release. Once downloaded, untar with tar -xvf /path/to/azure-amd64.tar.gz

Upload the VHD

Once you have pulled down the image, you can upload it to blob storage with:

az storage blob upload \
  --connection-string $CONNECTION \
  --container-name $STORAGE_CONTAINER \
  -f /path/to/extracted/talos-azure.vhd \
  -n talos-azure.vhd

Register the Image

Now that the image is present in our blob storage, we’ll register it.

az image create \
  --name talos \
  --source https://$STORAGE_ACCOUNT.blob.core.windows.net/$STORAGE_CONTAINER/talos-azure.vhd \
  --os-type linux \
  -g $GROUP

Network Infrastructure

Virtual Networks and Security Groups

Once the image is prepared, we’ll want to work through setting up the network. Issue the following to create a network security group and add rules to it.

# Create vnet
az network vnet create \
  --resource-group $GROUP \
  --location $LOCATION \
  --name talos-vnet \
  --subnet-name talos-subnet

# Create network security group
az network nsg create -g $GROUP -n talos-sg

# Client -> apid
az network nsg rule create \
  -g $GROUP \
  --nsg-name talos-sg \
  -n apid \
  --priority 1001 \
  --destination-port-ranges 50000 \
  --direction inbound

# Trustd
az network nsg rule create \
  -g $GROUP \
  --nsg-name talos-sg \
  -n trustd \
  --priority 1002 \
  --destination-port-ranges 50001 \
  --direction inbound

# etcd
az network nsg rule create \
  -g $GROUP \
  --nsg-name talos-sg \
  -n etcd \
  --priority 1003 \
  --destination-port-ranges 2379-2380 \
  --direction inbound

# Kubernetes API Server
az network nsg rule create \
  -g $GROUP \
  --nsg-name talos-sg \
  -n kube \
  --priority 1004 \
  --destination-port-ranges 6443 \
  --direction inbound

Load Balancer

We will create a public ip, load balancer, and a health check that we will use for our control plane.

# Create public ip
az network public-ip create \
  --resource-group $GROUP \
  --name talos-public-ip \
  --allocation-method static

# Create lb
az network lb create \
  --resource-group $GROUP \
  --name talos-lb \
  --public-ip-address talos-public-ip \
  --frontend-ip-name talos-fe \
  --backend-pool-name talos-be-pool

# Create health check
az network lb probe create \
  --resource-group $GROUP \
  --lb-name talos-lb \
  --name talos-lb-health \
  --protocol tcp \
  --port 6443

# Create lb rule for 6443
az network lb rule create \
  --resource-group $GROUP \
  --lb-name talos-lb \
  --name talos-6443 \
  --protocol tcp \
  --frontend-ip-name talos-fe \
  --frontend-port 6443 \
  --backend-pool-name talos-be-pool \
  --backend-port 6443 \
  --probe-name talos-lb-health

Network Interfaces

In Azure, we have to pre-create the NICs for our control plane so that they can be associated with our load balancer.

for i in $( seq 0 1 2 ); do
  # Create public IP for each nic
  az network public-ip create \
    --resource-group $GROUP \
    --name talos-controlplane-public-ip-$i \
    --allocation-method static


  # Create nic
  az network nic create \
    --resource-group $GROUP \
    --name talos-controlplane-nic-$i \
    --vnet-name talos-vnet \
    --subnet talos-subnet \
    --network-security-group talos-sg \
    --public-ip-address talos-controlplane-public-ip-$i\
    --lb-name talos-lb \
    --lb-address-pools talos-be-pool
done

# NOTES:
# Talos can detect PublicIPs automatically if PublicIP SKU is Basic.
# Use `--sku Basic` to set SKU to Basic.

Cluster Configuration

With our networking bits setup, we’ll fetch the IP for our load balancer and create our configuration files.

LB_PUBLIC_IP=$(az network public-ip show \
              --resource-group $GROUP \
              --name talos-public-ip \
              --query "ipAddress" \
              --output tsv)

talosctl gen config talos-k8s-azure-tutorial https://${LB_PUBLIC_IP}:6443

Compute Creation

We are now ready to create our azure nodes. Azure allows you to pass Talos machine configuration to the virtual machine at bootstrap time via user-data or custom-data methods.

Talos supports only custom-data method, machine configuration is available to the VM only on the first boot.

Use the steps below depending on whether you have manually uploaded a Talos image or if you are using the Community Gallery image.

Manual Image Upload

# Create availability set
az vm availability-set create \
  --name talos-controlplane-av-set \
  -g $GROUP

# Create the controlplane nodes
for i in $( seq 0 1 2 ); do
  az vm create \
    --name talos-controlplane-$i \
    --image talos \
    --custom-data ./controlplane.yaml \
    -g $GROUP \
    --admin-username talos \
    --generate-ssh-keys \
    --verbose \
    --boot-diagnostics-storage $STORAGE_ACCOUNT \
    --os-disk-size-gb 20 \
    --nics talos-controlplane-nic-$i \
    --availability-set talos-controlplane-av-set \
    --no-wait
done

# Create worker node
  az vm create \
    --name talos-worker-0 \
    --image talos \
    --vnet-name talos-vnet \
    --subnet talos-subnet \
    --custom-data ./worker.yaml \
    -g $GROUP \
    --admin-username talos \
    --generate-ssh-keys \
    --verbose \
    --boot-diagnostics-storage $STORAGE_ACCOUNT \
    --nsg talos-sg \
    --os-disk-size-gb 20 \
    --no-wait

# NOTES:
# `--admin-username` and `--generate-ssh-keys` are required by the az cli,
# but are not actually used by talos
# `--os-disk-size-gb` is the backing disk for Kubernetes and any workload containers
# `--boot-diagnostics-storage` is to enable console output which may be necessary
# for troubleshooting

Talos is updated in Azure’s Community Galleries (Preview) on every release.

To use the Talos image for the current release create the following environment variables.

Edit the variables below if you would like to use a different architecture or version.

# The architecture you would like to use. Options are "talos-x64" or "talos-arm64"
ARCHITECTURE="talos-x64"

# This will use the latest version of Talos. The version must be "latest" or in the format Major(int).Minor(int).Patch(int), e.g. 1.5.0
VERSION="latest"

Create the Virtual Machines.

# Create availability set
az vm availability-set create \
  --name talos-controlplane-av-set \
  -g $GROUP

# Create the controlplane nodes
for i in $( seq 0 1 2 ); do
  az vm create \
    --name talos-controlplane-$i \
    --image /CommunityGalleries/siderolabs-c4d707c0-343e-42de-b597-276e4f7a5b0b/Images/${ARCHITECTURE}/Versions/${VERSION} \
    --custom-data ./controlplane.yaml \
    -g $GROUP \
    --admin-username talos \
    --generate-ssh-keys \
    --verbose \
    --boot-diagnostics-storage $STORAGE_ACCOUNT \
    --os-disk-size-gb 20 \
    --nics talos-controlplane-nic-$i \
    --availability-set talos-controlplane-av-set \
    --no-wait
done

# Create worker node
  az vm create \
    --name talos-worker-0 \
    --image /CommunityGalleries/siderolabs-c4d707c0-343e-42de-b597-276e4f7a5b0b/Images/${ARCHITECTURE}/Versions/${VERSION} \
    --vnet-name talos-vnet \
    --subnet talos-subnet \
    --custom-data ./worker.yaml \
    -g $GROUP \
    --admin-username talos \
    --generate-ssh-keys \
    --verbose \
    --boot-diagnostics-storage $STORAGE_ACCOUNT \
    --nsg talos-sg \
    --os-disk-size-gb 20 \
    --no-wait

# NOTES:
# `--admin-username` and `--generate-ssh-keys` are required by the az cli,
# but are not actually used by talos
# `--os-disk-size-gb` is the backing disk for Kubernetes and any workload containers
# `--boot-diagnostics-storage` is to enable console output which may be necessary
# for troubleshooting

Bootstrap Etcd

You should now be able to interact with your cluster with talosctl. We will need to discover the public IP for our first control plane node first.

CONTROL_PLANE_0_IP=$(az network public-ip show \
                    --resource-group $GROUP \
                    --name talos-controlplane-public-ip-0 \
                    --query "ipAddress" \
                    --output tsv)

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint $CONTROL_PLANE_0_IP
talosctl --talosconfig talosconfig config node $CONTROL_PLANE_0_IP

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

3.4 - DigitalOcean

Creating a cluster via the CLI on DigitalOcean.

Creating a Talos Linux Cluster on Digital Ocean via the CLI

In this guide we will create an HA Kubernetes cluster with 1 worker node, in the NYC region. We assume an existing Space, and some familiarity with DigitalOcean. If you need more information on DigitalOcean specifics, please see the official DigitalOcean documentation.

Create the Image

Download the DigitalOcean image digital-ocean-amd64.raw.gz from the latest Talos release.

Note: the minimum version of Talos required to support Digital Ocean is v1.3.3.

Using an upload method of your choice (doctl does not have Spaces support), upload the image to a space. (It’s easy to drag the image file to the space using DigitalOcean’s web console.)

Note: Make sure you upload the file as public.

Now, create an image using the URL of the uploaded image:

export REGION=nyc3

doctl compute image create \
    --region $REGION \
    --image-description talos-digital-ocean-tutorial \
    --image-url https://$SPACENAME.$REGION.digitaloceanspaces.com/digital-ocean-amd64.raw.gz \
    Talos

Save the image ID. We will need it when creating droplets.

Create a Load Balancer

doctl compute load-balancer create \
    --region $REGION \
    --name talos-digital-ocean-tutorial-lb \
    --tag-name talos-digital-ocean-tutorial-control-plane \
    --health-check protocol:tcp,port:6443,check_interval_seconds:10,response_timeout_seconds:5,healthy_threshold:5,unhealthy_threshold:3 \
    --forwarding-rules entry_protocol:tcp,entry_port:443,target_protocol:tcp,target_port:6443

Note the returned ID of the load balancer.

We will need the IP of the load balancer. Using the ID of the load balancer, run:

doctl compute load-balancer get --format IP <load balancer ID>

Note that it may take a few minutes before the load balancer is provisioned, so repeat this command until it returns with the IP address.

Create the Machine Configuration Files

Using the IP address (or DNS name, if you have created one) of the loadbalancer, generate the base configuration files for the Talos machines. Also note that the load balancer forwards port 443 to port 6443 on the associated nodes, so we should use 443 as the port in the config definition:

$ talosctl gen config talos-k8s-digital-ocean-tutorial https://<load balancer IP or DNS>:443
created controlplane.yaml
created worker.yaml
created talosconfig

Create the Droplets

Create a dummy SSH key

Although SSH is not used by Talos, DigitalOcean requires that an SSH key be associated with a droplet during creation. We will create a dummy key that can be used to satisfy this requirement.

doctl compute ssh-key create --public-key "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDbl0I1s/yOETIKjFr7mDLp8LmJn6OIZ68ILjVCkoN6lzKmvZEqEm1YYeWoI0xgb80hQ1fKkl0usW6MkSqwrijoUENhGFd6L16WFL53va4aeJjj2pxrjOr3uBFm/4ATvIfFTNVs+VUzFZ0eGzTgu1yXydX8lZMWnT4JpsMraHD3/qPP+pgyNuI51LjOCG0gVCzjl8NoGaQuKnl8KqbSCARIpETg1mMw+tuYgaKcbqYCMbxggaEKA0ixJ2MpFC/kwm3PcksTGqVBzp3+iE5AlRe1tnbr6GhgT839KLhOB03j7lFl1K9j1bMTOEj5Io8z7xo/XeF2ZQKHFWygAJiAhmKJ dummy@dummy.local" dummy

Note the ssh key ID that is returned - we will use it in creating the droplets.

Create the Control Plane Nodes

Run the following commands to create three control plane nodes:

doctl compute droplet create \
    --region $REGION \
    --image <image ID> \
    --size s-2vcpu-4gb \
    --enable-private-networking \
    --tag-names talos-digital-ocean-tutorial-control-plane \
    --user-data-file controlplane.yaml \
    --ssh-keys <ssh key ID> \
    talos-control-plane-1
doctl compute droplet create \
    --region $REGION \
    --image <image ID> \
    --size s-2vcpu-4gb \
    --enable-private-networking \
    --tag-names talos-digital-ocean-tutorial-control-plane \
    --user-data-file controlplane.yaml \
    --ssh-keys <ssh key ID> \
    talos-control-plane-2
doctl compute droplet create \
    --region $REGION \
    --image <image ID> \
    --size s-2vcpu-4gb \
    --enable-private-networking \
    --tag-names talos-digital-ocean-tutorial-control-plane \
    --user-data-file controlplane.yaml \
    --ssh-keys <ssh key ID> \
    talos-control-plane-3

Note the droplet ID returned for the first control plane node.

Create the Worker Nodes

Run the following to create a worker node:

doctl compute droplet create \
    --region $REGION \
    --image <image ID> \
    --size s-2vcpu-4gb \
    --enable-private-networking \
    --user-data-file worker.yaml \
    --ssh-keys <ssh key ID>  \
    talos-worker-1

Bootstrap Etcd

To configure talosctl we will need the first control plane node’s IP:

doctl compute droplet get --format PublicIPv4 <droplet ID>

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

We can also watch the cluster bootstrap via:

talosctl --talosconfig talosconfig health

3.5 - Exoscale

Creating a cluster via the CLI using exoscale.com

Talos is known to work on exoscale.com; however, it is currently undocumented.

3.6 - GCP

Creating a cluster via the CLI on Google Cloud Platform.

Creating a Cluster via the CLI

In this guide, we will create an HA Kubernetes cluster in GCP with 1 worker node. We will assume an existing Cloud Storage bucket, and some familiarity with Google Cloud. If you need more information on Google Cloud specifics, please see the official Google documentation.

jq and talosctl also needs to be installed

Manual Setup

Environment Setup

We’ll make use of the following environment variables throughout the setup. Edit the variables below with your correct information.

# Storage account to use
export STORAGE_BUCKET="StorageBucketName"
# Region
export REGION="us-central1"

Create the Image

First, download the Google Cloud image from a Talos release. These images are called gcp-$ARCH.tar.gz.

Upload the Image

Once you have downloaded the image, you can upload it to your storage bucket with:

gsutil cp /path/to/gcp-amd64.tar.gz gs://$STORAGE_BUCKET

Register the image

Now that the image is present in our bucket, we’ll register it.

gcloud compute images create talos \
 --source-uri=gs://$STORAGE_BUCKET/gcp-amd64.tar.gz \
 --guest-os-features=VIRTIO_SCSI_MULTIQUEUE

Network Infrastructure

Load Balancers and Firewalls

Once the image is prepared, we’ll want to work through setting up the network. Issue the following to create a firewall, load balancer, and their required components.

130.211.0.0/22 and 35.191.0.0/16 are the GCP Load Balancer IP ranges

# Create Instance Group
gcloud compute instance-groups unmanaged create talos-ig \
  --zone $REGION-b

# Create port for IG
gcloud compute instance-groups set-named-ports talos-ig \
    --named-ports tcp6443:6443 \
    --zone $REGION-b

# Create health check
gcloud compute health-checks create tcp talos-health-check --port 6443

# Create backend
gcloud compute backend-services create talos-be \
    --global \
    --protocol TCP \
    --health-checks talos-health-check \
    --timeout 5m \
    --port-name tcp6443

# Add instance group to backend
gcloud compute backend-services add-backend talos-be \
    --global \
    --instance-group talos-ig \
    --instance-group-zone $REGION-b

# Create tcp proxy
gcloud compute target-tcp-proxies create talos-tcp-proxy \
    --backend-service talos-be \
    --proxy-header NONE

# Create LB IP
gcloud compute addresses create talos-lb-ip --global

# Forward 443 from LB IP to tcp proxy
gcloud compute forwarding-rules create talos-fwd-rule \
    --global \
    --ports 443 \
    --address talos-lb-ip \
    --target-tcp-proxy talos-tcp-proxy

# Create firewall rule for health checks
gcloud compute firewall-rules create talos-controlplane-firewall \
     --source-ranges 130.211.0.0/22,35.191.0.0/16 \
     --target-tags talos-controlplane \
     --allow tcp:6443

# Create firewall rule to allow talosctl access
gcloud compute firewall-rules create talos-controlplane-talosctl \
  --source-ranges 0.0.0.0/0 \
  --target-tags talos-controlplane \
  --allow tcp:50000

Cluster Configuration

With our networking bits setup, we’ll fetch the IP for our load balancer and create our configuration files.

LB_PUBLIC_IP=$(gcloud compute forwarding-rules describe talos-fwd-rule \
               --global \
               --format json \
               | jq -r .IPAddress)

talosctl gen config talos-k8s-gcp-tutorial https://${LB_PUBLIC_IP}:443

Additionally, you can specify --config-patch with RFC6902 jsonpatch which will be applied during the config generation.

Compute Creation

We are now ready to create our GCP nodes.

# Create the control plane nodes.
for i in $( seq 1 3 ); do
  gcloud compute instances create talos-controlplane-$i \
    --image talos \
    --zone $REGION-b \
    --tags talos-controlplane \
    --boot-disk-size 20GB \
    --metadata-from-file=user-data=./controlplane.yaml
    --tags talos-controlplane-$i
done

# Add control plane nodes to instance group
for i in $( seq 1 3 ); do
  gcloud compute instance-groups unmanaged add-instances talos-ig \
      --zone $REGION-b \
      --instances talos-controlplane-$i
done

# Create worker
gcloud compute instances create talos-worker-0 \
  --image talos \
  --zone $REGION-b \
  --boot-disk-size 20GB \
  --metadata-from-file=user-data=./worker.yaml
  --tags talos-worker-$i

Bootstrap Etcd

You should now be able to interact with your cluster with talosctl. We will need to discover the public IP for our first control plane node first.

CONTROL_PLANE_0_IP=$(gcloud compute instances describe talos-controlplane-0 \
                     --zone $REGION-b \
                     --format json \
                     | jq -r '.networkInterfaces[0].accessConfigs[0].natIP')

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint $CONTROL_PLANE_0_IP
talosctl --talosconfig talosconfig config node $CONTROL_PLANE_0_IP

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

Cleanup

# cleanup VM's
gcloud compute instances delete \
  talos-worker-0 \
  talos-controlplane-0 \
  talos-controlplane-1 \
  talos-controlplane-2

# cleanup firewall rules
gcloud compute firewall-rules delete \
  talos-controlplane-talosctl \
  talos-controlplane-firewall

# cleanup forwarding rules
gcloud compute forwarding-rules delete \
  talos-fwd-rule

# cleanup addresses
gcloud compute addresses delete \
  talos-lb-ip

# cleanup proxies
gcloud compute target-tcp-proxies delete \
  talos-tcp-proxy

# cleanup backend services
gcloud compute backend-services delete \
  talos-be

# cleanup health checks
gcloud compute health-checks delete \
  talos-health-check

# cleanup unmanaged instance groups
gcloud compute instance-groups unmanaged delete \
  talos-ig

# cleanup Talos image
gcloud compute images delete \
  talos

Using GCP Deployment manager

Using GCP deployment manager automatically creates a Google Storage bucket and uploads the Talos image to it. Once the deployment is complete the generated talosconfig and kubeconfig files are uploaded to the bucket.

By default this setup creates a three node control plane and a single worker in us-west1-b

First we need to create a folder to store our deployment manifests and perform all subsequent operations from that folder.

mkdir -p talos-gcp-deployment
cd talos-gcp-deployment

Getting the deployment manifests

We need to download two deployment manifests for the deployment from the Talos github repository.

curl -fsSLO "https://raw.githubusercontent.com/siderolabs/talos/master/website/content/v1.8/talos-guides/install/cloud-platforms/gcp/config.yaml"
curl -fsSLO "https://raw.githubusercontent.com/siderolabs/talos/master/website/content/v1.8/talos-guides/install/cloud-platforms/gcp/talos-ha.jinja"
# if using ccm
curl -fsSLO "https://raw.githubusercontent.com/siderolabs/talos/master/website/content/v1.8/talos-guides/install/cloud-platforms/gcp/gcp-ccm.yaml"

Updating the config

Now we need to update the local config.yaml file with any required changes such as changing the default zone, Talos version, machine sizes, nodes count etc.

An example config.yaml file is shown below:

imports:
  - path: talos-ha.jinja

resources:
  - name: talos-ha
    type: talos-ha.jinja
    properties:
      zone: us-west1-b
      talosVersion: v1.8.0-alpha.0
      externalCloudProvider: false
      controlPlaneNodeCount: 5
      controlPlaneNodeType: n1-standard-1
      workerNodeCount: 3
      workerNodeType: n1-standard-1
outputs:
  - name: bucketName
    value: $(ref.talos-ha.bucketName)

Enabling external cloud provider

Note: The externalCloudProvider property is set to false by default. The manifest used for deploying the ccm (cloud controller manager) is currently using the GCP ccm provided by openshift since there are no public images for the ccm yet.

Since the routes controller is disabled while deploying the CCM, the CNI pods needs to be restarted after the CCM deployment is complete to remove the node.kubernetes.io/network-unavailable taint. See Nodes network-unavailable taint not removed after installing ccm for more information

Use a custom built image for the ccm deployment if required.

Creating the deployment

Now we are ready to create the deployment. Confirm with y for any prompts. Run the following command to create the deployment:

# use a unique name for the deployment, resources are prefixed with the deployment name
export DEPLOYMENT_NAME="<deployment name>"
gcloud deployment-manager deployments create "${DEPLOYMENT_NAME}" --config config.yaml

Retrieving the outputs

First we need to get the deployment outputs.

# first get the outputs
OUTPUTS=$(gcloud deployment-manager deployments describe "${DEPLOYMENT_NAME}" --format json | jq '.outputs[]')

BUCKET_NAME=$(jq -r '. | select(.name == "bucketName").finalValue' <<< "${OUTPUTS}")
# used when cloud controller is enabled
SERVICE_ACCOUNT=$(jq -r '. | select(.name == "serviceAccount").finalValue' <<< "${OUTPUTS}")
PROJECT=$(jq -r '. | select(.name == "project").finalValue' <<< "${OUTPUTS}")

Note: If cloud controller manager is enabled, the below command needs to be run to allow the controller custom role to access cloud resources

gcloud projects add-iam-policy-binding \
    "${PROJECT}" \
    --member "serviceAccount:${SERVICE_ACCOUNT}" \
    --role roles/iam.serviceAccountUser

gcloud projects add-iam-policy-binding \
    "${PROJECT}" \
    --member serviceAccount:"${SERVICE_ACCOUNT}" \
    --role roles/compute.admin

gcloud projects add-iam-policy-binding \
    "${PROJECT}" \
    --member serviceAccount:"${SERVICE_ACCOUNT}" \
    --role roles/compute.loadBalancerAdmin

Downloading talos and kube config

In addition to the talosconfig and kubeconfig files, the storage bucket contains the controlplane.yaml and worker.yaml files used to join additional nodes to the cluster.

gsutil cp "gs://${BUCKET_NAME}/generated/talosconfig" .
gsutil cp "gs://${BUCKET_NAME}/generated/kubeconfig" .

Deploying the cloud controller manager

kubectl \
  --kubeconfig kubeconfig \
  --namespace kube-system \
  apply \
  --filename gcp-ccm.yaml
#  wait for the ccm to be up
kubectl \
  --kubeconfig kubeconfig \
  --namespace kube-system \
  rollout status \
  daemonset cloud-controller-manager

If the cloud controller manager is enabled, we need to restart the CNI pods to remove the node.kubernetes.io/network-unavailable taint.

# restart the CNI pods, in this case flannel
kubectl \
  --kubeconfig kubeconfig \
  --namespace kube-system \
  rollout restart \
  daemonset kube-flannel
# wait for the pods to be restarted
kubectl \
  --kubeconfig kubeconfig \
  --namespace kube-system \
  rollout status \
  daemonset kube-flannel

Check cluster status

kubectl \
  --kubeconfig kubeconfig \
  get nodes

Cleanup deployment

Warning: This will delete the deployment and all resources associated with it.

Run below if cloud controller manager is enabled

gcloud projects remove-iam-policy-binding \
    "${PROJECT}" \
    --member "serviceAccount:${SERVICE_ACCOUNT}" \
    --role roles/iam.serviceAccountUser

gcloud projects remove-iam-policy-binding \
    "${PROJECT}" \
    --member serviceAccount:"${SERVICE_ACCOUNT}" \
    --role roles/compute.admin

gcloud projects remove-iam-policy-binding \
    "${PROJECT}" \
    --member serviceAccount:"${SERVICE_ACCOUNT}" \
    --role roles/compute.loadBalancerAdmin

Now we can finally remove the deployment

# delete the objects in the bucket first
gsutil -m rm -r "gs://${BUCKET_NAME}"
gcloud deployment-manager deployments delete "${DEPLOYMENT_NAME}" --quiet

3.7 - Hetzner

Creating a cluster via the CLI (hcloud) on Hetzner.

Upload image

Hetzner Cloud does not support uploading custom images. You can email their support to get a Talos ISO uploaded by following issues:3599 or you can prepare image snapshot by yourself.

There are two options to upload your own.

  1. Run an instance in rescue mode and replace the system OS with the Talos image
  2. Use Hashicorp packer to prepare an image

Rescue mode

Create a new Server in the Hetzner console. Enable the Hetzner Rescue System for this server and reboot. Upon a reboot, the server will boot a special minimal Linux distribution designed for repair and reinstall. Once running, login to the server using ssh to prepare the system disk by doing the following:

# Check that you in Rescue mode
df

### Result is like:
# udev                   987432         0    987432   0% /dev
# 213.133.99.101:/nfs 308577696 247015616  45817536  85% /root/.oldroot/nfs
# overlay                995672      8340    987332   1% /
# tmpfs                  995672         0    995672   0% /dev/shm
# tmpfs                  398272       572    397700   1% /run
# tmpfs                    5120         0      5120   0% /run/lock
# tmpfs                  199132         0    199132   0% /run/user/0

# Download the Talos image
cd /tmp
wget -O /tmp/talos.raw.xz https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/hcloud-amd64.raw.xz
# Replace system
xz -d -c /tmp/talos.raw.xz | dd of=/dev/sda && sync
# shutdown the instance
shutdown -h now

To make sure disk content is consistent, it is recommended to shut the server down before taking an image (snapshot). Once shutdown, simply create an image (snapshot) from the console. You can now use this snapshot to run Talos on the cloud.

Packer

Install packer to the local machine.

Create a config file for packer to use:

# hcloud.pkr.hcl

packer {
  required_plugins {
    hcloud = {
      source  = "github.com/hetznercloud/hcloud"
      version = "~> 1"
    }
  }
}

variable "talos_version" {
  type    = string
  default = "v1.8.0-alpha.0"
}

variable "arch" {
  type    = string
  default = "amd64"
}

variable "server_type" {
  type    = string
  default = "cx11"
}

variable "server_location" {
  type    = string
  default = "hel1"
}

locals {
  image = "https://github.com/siderolabs/talos/releases/download/${var.talos_version}/hcloud-${var.arch}.raw.xz"
}

source "hcloud" "talos" {
  rescue       = "linux64"
  image        = "debian-11"
  location     = "${var.server_location}"
  server_type  = "${var.server_type}"
  ssh_username = "root"

  snapshot_name   = "talos system disk - ${var.arch} - ${var.talos_version}"
  snapshot_labels = {
    type    = "infra",
    os      = "talos",
    version = "${var.talos_version}",
    arch    = "${var.arch}",
  }
}

build {
  sources = ["source.hcloud.talos"]

  provisioner "shell" {
    inline = [
      "apt-get install -y wget",
      "wget -O /tmp/talos.raw.xz ${local.image}",
      "xz -d -c /tmp/talos.raw.xz | dd of=/dev/sda && sync",
    ]
  }
}

Additionally you could create a file containing

arch            = "arm64"
server_type     = "cax11"
server_location = "fsn1"

and build the snapshot for arm64.

Create a new image by issuing the commands shown below. Note that to create a new API token for your Project, switch into the Hetzner Cloud Console choose a Project, go to Access → Security, and create a new token.

# First you need set API Token
export HCLOUD_TOKEN=${TOKEN}

# Upload image
packer init .
packer build .
# Save the image ID
export IMAGE_ID=<image-id-in-packer-output>

After doing this, you can find the snapshot in the console interface.

Creating a Cluster via the CLI

This section assumes you have the hcloud console utility on your local machine.

# Set hcloud context and api key
hcloud context create talos-tutorial

Create a Load Balancer

Create a load balancer by issuing the commands shown below. Save the IP/DNS name, as this info will be used in the next step.

hcloud load-balancer create --name controlplane --network-zone eu-central --type lb11 --label 'type=controlplane'

### Result is like:
# LoadBalancer 484487 created
# IPv4: 49.12.X.X
# IPv6: 2a01:4f8:X:X::1

hcloud load-balancer add-service controlplane \
    --listen-port 6443 --destination-port 6443 --protocol tcp
hcloud load-balancer add-target controlplane \
    --label-selector 'type=controlplane'

Create the Machine Configuration Files

Generating Base Configurations

Using the IP/DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines by issuing:

$ talosctl gen config talos-k8s-hcloud-tutorial https://<load balancer IP or DNS>:6443
created controlplane.yaml
created worker.yaml
created talosconfig

At this point, you can modify the generated configs to your liking. Optionally, you can specify --config-patch with RFC6902 jsonpatches which will be applied during the config generation.

Validate the Configuration Files

Validate any edited machine configs with:

$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config worker.yaml --mode cloud
worker.yaml is valid for cloud mode

Create the Servers

We can now create our servers. Note that you can find IMAGE_ID in the snapshot section of the console: https://console.hetzner.cloud/projects/$PROJECT_ID/servers/snapshots.

Create the Control Plane Nodes

Create the control plane nodes with:

export IMAGE_ID=<your-image-id>

hcloud server create --name talos-control-plane-1 \
    --image ${IMAGE_ID} \
    --type cx21 --location hel1 \
    --label 'type=controlplane' \
    --user-data-from-file controlplane.yaml

hcloud server create --name talos-control-plane-2 \
    --image ${IMAGE_ID} \
    --type cx21 --location fsn1 \
    --label 'type=controlplane' \
    --user-data-from-file controlplane.yaml

hcloud server create --name talos-control-plane-3 \
    --image ${IMAGE_ID} \
    --type cx21 --location nbg1 \
    --label 'type=controlplane' \
    --user-data-from-file controlplane.yaml

Create the Worker Nodes

Create the worker nodes with the following command, repeating (and incrementing the name counter) as many times as desired.

hcloud server create --name talos-worker-1 \
    --image ${IMAGE_ID} \
    --type cx21 --location hel1 \
    --label 'type=worker' \
    --user-data-from-file worker.yaml

Bootstrap Etcd

To configure talosctl we will need the first control plane node’s IP. This can be found by issuing:

hcloud server list | grep talos-control-plane

Set the endpoints and nodes for your talosconfig with:

talosctl --talosconfig talosconfig config endpoint <control-plane-1-IP>
talosctl --talosconfig talosconfig config node <control-plane-1-IP>

Bootstrap etcd on the first control plane node with:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

3.8 - Kubernetes

Running Talos Linux as a pod in Kubernetes.

Talos Linux can be run as a pod in Kubernetes similar to running Talos in Docker. This can be used e.g. to run controlplane nodes inside an existing Kubernetes cluster.

Talos Linux running in Kubernetes is not full Talos Linux experience, as it is running in a container using the host’s kernel and network stack. Some operations like upgrades and reboots are not supported.

Prerequisites

  • a running Kubernetes cluster
  • a talos container image: ghcr.io/siderolabs/talos:v1.8.0-alpha.0

Machine Configuration

Machine configuration can be generated using Getting Started guide. Machine install disk will ge ignored, as the install image. The Talos version will be driven by the container image being used.

The required machine configuration patch to enable using container runtime DNS:

machine:
  features:
    hostDNS:
      enabled: true
      forwardKubeDNSToHost: true

Talos and Kubernetes API can be exposed using Kubernetes services or load balancers, so they can be accessed from outside the cluster.

Running Talos Pods

There might be many ways to run Talos in Kubernetes (StatefulSet, Deployment, single Pod), so we will only provide some basic guidance here.

Container Settings

env:
  - name: PLATFORM
    value: container
image: ghcr.io/siderolabs/talos:v1.8.0-alpha.0
ports:
  - containerPort: 50000
    name: talos-api
    protocol: TCP
  - containerPort: 6443
    name: k8s-api
    protocol: TCP
securityContext:
  privileged: true
  readOnlyRootFilesystem: true
  seccompProfile:
      type: Unconfined

Submitting Initial Machine Configuration

Initial machine configuration can be submitted using talosctl apply-config --insecure when the pod is running, or it can be submitted via an environment variable USERDATA with base64-encoded machine configuration.

Volume Mounts

Three ephemeral mounts are required for /run, /system, and /tmp directories:

volumeMounts:
  - mountPath: /run
    name: run
  - mountPath: /system
    name: system
  - mountPath: /tmp
    name: tmp
volumes:
  - emptyDir: {}
    name: run
  - emptyDir: {}
    name: system
  - emptyDir: {}
    name: tmp

Several other mountpoints are required, and they should persist across pod restarts, so one should use PersistentVolume for them:

volumeMounts:
  - mountPath: /system/state
    name: system-state
  - mountPath: /var
    name: var
  - mountPath: /etc/cni
    name: etc-cni
  - mountPath: /etc/kubernetes
    name: etc-kubernetes
  - mountPath: /usr/libexec/kubernetes
    name: usr-libexec-kubernetes
  - mountPath: /opt
    name: opt

3.9 - Nocloud

Creating a cluster via the CLI using qemu.

Talos supports nocloud data source implementation.

There are two ways to configure Talos server with nocloud platform:

  • via SMBIOS “serial number” option
  • using CDROM or USB-flash filesystem

Note: This requires the nocloud image which can be found on the Github Releases page.

SMBIOS Serial Number

This method requires the network connection to be up (e.g. via DHCP). Configuration is delivered from the HTTP server.

ds=nocloud-net;s=http://10.10.0.1/configs/;h=HOSTNAME

After the network initialization is complete, Talos fetches:

  • the machine config from http://10.10.0.1/configs/user-data
  • the network config (if available) from http://10.10.0.1/configs/network-config

SMBIOS: QEMU

Add the following flag to qemu command line when starting a VM:

qemu-system-x86_64 \
  ...\
  -smbios type=1,serial=ds=nocloud-net;s=http://10.10.0.1/configs/

SMBIOS: Proxmox

Set the source machine config through the serial number on Proxmox GUI.

You can read the VM config from a root shell with the command qm config $ID ($ID - VM ID number of virtual machine), you will see something like:

# qm config $ID
...
smbios1: uuid=5b0f7dcf-cfe3-4bf3-87a2-1cad29bd51f9,serial=ZHM9bm9jbG91ZC1uZXQ7cz1odHRwOi8vMTAuMTAuMC4xL2NvbmZpZ3Mv,base64=1
...

Where serial holds the base64-encoded string version of ds=nocloud-net;s=http://10.10.0.1/configs/.

The serial can also be set from a root shell on the Proxmox server:

# qm set $VM --smbios1 "uuid=5b0f7dcf-cfe3-4bf3-87a2-1cad29bd51f9,serial=$(printf '%s' 'ds=nocloud-net;s=http://10.10.0.1/configs/' | base64),base64=1"
update VM 105: -smbios1 uuid=5b0f7dcf-cfe3-4bf3-87a2-1cad29bd51f9,serial=ZHM9bm9jbG91ZC1uZXQ7cz1odHRwOi8vMTAuMTAuMC4xL2NvbmZpZ3Mv,base64=1

Keep in mind that if you set the serial from the command line, you must encode it as base64, and you must include the UUID and any other settings that are already set for the smbios1 option or they will be removed.

CDROM/USB

Talos can also get machine config from local attached storage without any prior network connection being established.

You can provide configs to the server via files on a VFAT or ISO9660 filesystem. The filesystem volume label must be cidata or CIDATA.

Example: QEMU

Create and prepare Talos machine config:

export CONTROL_PLANE_IP=192.168.1.10

talosctl gen config talos-nocloud https://$CONTROL_PLANE_IP:6443 --output-dir _out

Prepare cloud-init configs:

mkdir -p iso
mv _out/controlplane.yaml iso/user-data
echo "local-hostname: controlplane-1" > iso/meta-data
cat > iso/network-config << EOF
version: 1
config:
   - type: physical
     name: eth0
     mac_address: "52:54:00:12:34:00"
     subnets:
        - type: static
          address: 192.168.1.10
          netmask: 255.255.255.0
          gateway: 192.168.1.254
EOF

Create cloud-init iso image

cd iso && genisoimage -output cidata.iso -V cidata -r -J user-data meta-data network-config

Start the VM

qemu-system-x86_64 \
    ...
    -cdrom iso/cidata.iso \
    ...

Example: Proxmox

Proxmox can create cloud-init disk for you. Edit the cloud-init config information in Proxmox as follows, substitute your own information as necessary:

and then add a cicustom param to the virtual machine’s configuration from a root shell:

# qm set 100 --cicustom user=local:snippets/controlplane-1.yml
update VM 100: -cicustom user=local:snippets/controlplane-1.yml

Note: snippets/controlplane-1.yml is Talos machine config. It is usually located at /var/lib/vz/snippets/controlplane-1.yml. This file must be placed to this path manually, as Proxmox does not support snippet uploading via API/GUI.

Click on Regenerate Image button after the above changes are made.

3.10 - OpenStack

Creating a cluster via the CLI on OpenStack.

Creating a Cluster via the CLI

In this guide, we will create an HA Kubernetes cluster in OpenStack with 1 worker node. We will assume an existing some familiarity with OpenStack. If you need more information on OpenStack specifics, please see the official OpenStack documentation.

Environment Setup

You should have an existing openrc file. This file will provide environment variables necessary to talk to your OpenStack cloud. See here for instructions on fetching this file.

Create the Image

First, download the OpenStack image from a Talos release. These images are called openstack-$ARCH.tar.gz. Untar this file with tar -xvf openstack-$ARCH.tar.gz. The resulting file will be called disk.raw.

Upload the Image

Once you have the image, you can upload to OpenStack with:

openstack image create --public --disk-format raw --file disk.raw talos

Network Infrastructure

Load Balancer and Network Ports

Once the image is prepared, you will need to work through setting up the network. Issue the following to create a load balancer, the necessary network ports for each control plane node, and associations between the two.

Creating loadbalancer:

# Create load balancer, updating vip-subnet-id if necessary
openstack loadbalancer create --name talos-control-plane --vip-subnet-id public

# Create listener
openstack loadbalancer listener create --name talos-control-plane-listener --protocol TCP --protocol-port 6443 talos-control-plane

# Pool and health monitoring
openstack loadbalancer pool create --name talos-control-plane-pool --lb-algorithm ROUND_ROBIN --listener talos-control-plane-listener --protocol TCP
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type TCP talos-control-plane-pool

Creating ports:

# Create ports for control plane nodes, updating network name if necessary
openstack port create --network shared talos-control-plane-1
openstack port create --network shared talos-control-plane-2
openstack port create --network shared talos-control-plane-3

# Create floating IPs for the ports, so that you will have talosctl connectivity to each control plane
openstack floating ip create --port talos-control-plane-1 public
openstack floating ip create --port talos-control-plane-2 public
openstack floating ip create --port talos-control-plane-3 public

Note: Take notice of the private and public IPs associated with each of these ports, as they will be used in the next step. Additionally, take node of the port ID, as it will be used in server creation.

Associate port’s private IPs to loadbalancer:

# Create members for each port IP, updating subnet-id and address as necessary.
openstack loadbalancer member create --subnet-id shared-subnet --address <PRIVATE IP OF talos-control-plane-1 PORT> --protocol-port 6443 talos-control-plane-pool
openstack loadbalancer member create --subnet-id shared-subnet --address <PRIVATE IP OF talos-control-plane-2 PORT> --protocol-port 6443 talos-control-plane-pool
openstack loadbalancer member create --subnet-id shared-subnet --address <PRIVATE IP OF talos-control-plane-3 PORT> --protocol-port 6443 talos-control-plane-pool

Security Groups

This example uses the default security group in OpenStack. Ports have been opened to ensure that connectivity from both inside and outside the group is possible. You will want to allow, at a minimum, ports 6443 (Kubernetes API server) and 50000 (Talos API) from external sources. It is also recommended to allow communication over all ports from within the subnet.

Cluster Configuration

With our networking bits setup, we’ll fetch the IP for our load balancer and create our configuration files.

LB_PUBLIC_IP=$(openstack loadbalancer show talos-control-plane -f json | jq -r .vip_address)

talosctl gen config talos-k8s-openstack-tutorial https://${LB_PUBLIC_IP}:6443

Additionally, you can specify --config-patch with RFC6902 jsonpatch which will be applied during the config generation.

Compute Creation

We are now ready to create our OpenStack nodes.

Create control plane:

# Create control planes 2 and 3, substituting the same info.
for i in $( seq 1 3 ); do
  openstack server create talos-control-plane-$i --flavor m1.small --nic port-id=talos-control-plane-$i --image talos --user-data /path/to/controlplane.yaml
done

Create worker:

# Update network name as necessary.
openstack server create talos-worker-1 --flavor m1.small --network shared --image talos --user-data /path/to/worker.yaml

Note: This step can be repeated to add more workers.

Bootstrap Etcd

You should now be able to interact with your cluster with talosctl. We will use one of the floating IPs we allocated earlier. It does not matter which one.

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

3.11 - Oracle

Creating a cluster via the CLI (oci) on OracleCloud.com.

Upload image

Oracle Cloud at the moment does not have a Talos official image. So you can use Bring Your Own Image (BYOI) approach.

Once the image is uploaded, set the Boot volume type to Paravirtualized mode.

OracleCloud has highly available NTP service, it can be enabled in Talos machine config with:

machine:
  time:
    servers:
      - 169.254.169.254

Creating a Cluster via the CLI

Login to the console. And open the Cloud Shell.

Create a network

export cidr_block=10.0.0.0/16
export subnet_block=10.0.0.0/24
export compartment_id=<substitute-value-of-compartment_id> # https://docs.cloud.oracle.com/en-us/iaas/tools/oci-cli/latest/oci_cli_docs/cmdref/network/vcn/create.html#cmdoption-compartment-id

export vcn_id=$(oci network vcn create --cidr-block $cidr_block --display-name talos-example --compartment-id $compartment_id --query data.id --raw-output)
export rt_id=$(oci network subnet create --cidr-block $subnet_block --display-name kubernetes --compartment-id $compartment_id --vcn-id $vcn_id --query data.route-table-id --raw-output)
export ig_id=$(oci network internet-gateway create --compartment-id $compartment_id --is-enabled true --vcn-id $vcn_id --query data.id --raw-output)

oci network route-table update --rt-id $rt_id --route-rules "[{\"cidrBlock\":\"0.0.0.0/0\",\"networkEntityId\":\"$ig_id\"}]" --force

# disable firewall
export sl_id=$(oci network vcn list --compartment-id $compartment_id --query 'data[0]."default-security-list-id"' --raw-output)

oci network security-list update --security-list-id $sl_id --egress-security-rules '[{"destination": "0.0.0.0/0", "protocol": "all", "isStateless": false}]' --ingress-security-rules '[{"source": "0.0.0.0/0", "protocol": "all", "isStateless": false}]' --force

Create a Load Balancer

Create a load balancer by issuing the commands shown below. Save the IP/DNS name, as this info will be used in the next step.

export subnet_id=$(oci network subnet list --compartment-id=$compartment_id --display-name kubernetes --query data[0].id --raw-output)
export network_load_balancer_id=$(oci nlb network-load-balancer create --compartment-id $compartment_id --display-name controlplane-lb --subnet-id $subnet_id --is-preserve-source-destination false --is-private false --query data.id --raw-output)

cat <<EOF > talos-health-checker.json
{
  "intervalInMillis": 10000,
  "port": 50000,
  "protocol": "TCP"
}
EOF

oci nlb backend-set create --health-checker file://talos-health-checker.json --name talos --network-load-balancer-id $network_load_balancer_id --policy TWO_TUPLE --is-preserve-source false
oci nlb listener create --default-backend-set-name talos --name talos --network-load-balancer-id $network_load_balancer_id --port 50000 --protocol TCP

cat <<EOF > controlplane-health-checker.json
{
  "intervalInMillis": 10000,
  "port": 6443,
  "protocol": "HTTPS",
  "returnCode": 401,
  "urlPath": "/readyz"
}
EOF

oci nlb backend-set create --health-checker file://controlplane-health-checker.json --name controlplane --network-load-balancer-id $network_load_balancer_id --policy TWO_TUPLE --is-preserve-source false
oci nlb listener create --default-backend-set-name controlplane --name controlplane --network-load-balancer-id $network_load_balancer_id --port 6443 --protocol TCP

# Save the external IP
oci nlb network-load-balancer list --compartment-id $compartment_id --display-name controlplane-lb --query 'data.items[0]."ip-addresses"'

Create the Machine Configuration Files

Generating Base Configurations

Using the IP/DNS name of the loadbalancer created earlier, generate the base configuration files for the Talos machines by issuing:

$ talosctl gen config talos-k8s-oracle-tutorial https://<load balancer IP or DNS>:6443 --additional-sans <load balancer IP or DNS>
created controlplane.yaml
created worker.yaml
created talosconfig

At this point, you can modify the generated configs to your liking. Optionally, you can specify --config-patch with RFC6902 jsonpatches which will be applied during the config generation.

Validate the Configuration Files

Validate any edited machine configs with:

$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config worker.yaml --mode cloud
worker.yaml is valid for cloud mode

Create the Servers

Create the Control Plane Nodes

Create the control plane nodes with:

export shape='VM.Standard.A1.Flex'
export subnet_id=$(oci network subnet list --compartment-id=$compartment_id --display-name kubernetes --query data[0].id --raw-output)
export image_id=$(oci compute image list --compartment-id $compartment_id --shape $shape --operating-system Talos --limit 1 --query data[0].id --raw-output)
export availability_domain=$(oci iam availability-domain list --compartment-id=$compartment_id --query data[0].name --raw-output)
export network_load_balancer_id=$(oci nlb network-load-balancer list --compartment-id $compartment_id --display-name controlplane-lb --query 'data.items[0].id' --raw-output)

cat <<EOF > shape.json
{
  "memoryInGBs": 4,
  "ocpus": 1
}
EOF

export instance_id=$(oci compute instance launch --shape $shape --shape-config file://shape.json --availability-domain $availability_domain --compartment-id $compartment_id --image-id $image_id --subnet-id $subnet_id --display-name controlplane-1 --private-ip 10.0.0.11 --assign-public-ip true --launch-options '{"networkType":"PARAVIRTUALIZED"}' --user-data-file controlplane.yaml --query 'data.id' --raw-output)

oci nlb backend create --backend-set-name talos --network-load-balancer-id $network_load_balancer_id --port 50000 --target-id $instance_id
oci nlb backend create --backend-set-name controlplane --network-load-balancer-id $network_load_balancer_id --port 6443 --target-id $instance_id

export instance_id=$(oci compute instance launch --shape $shape --shape-config file://shape.json --availability-domain $availability_domain --compartment-id $compartment_id --image-id $image_id --subnet-id $subnet_id --display-name controlplane-2 --private-ip 10.0.0.12 --assign-public-ip true --launch-options '{"networkType":"PARAVIRTUALIZED"}' --user-data-file controlplane.yaml --query 'data.id' --raw-output)

oci nlb backend create --backend-set-name talos --network-load-balancer-id $network_load_balancer_id --port 50000 --target-id $instance_id
oci nlb backend create --backend-set-name controlplane --network-load-balancer-id $network_load_balancer_id --port 6443 --target-id $instance_id

export instance_id=$(oci compute instance launch --shape $shape --shape-config file://shape.json --availability-domain $availability_domain --compartment-id $compartment_id --image-id $image_id --subnet-id $subnet_id --display-name controlplane-3 --private-ip 10.0.0.13 --assign-public-ip true --launch-options '{"networkType":"PARAVIRTUALIZED"}' --user-data-file controlplane.yaml --query 'data.id' --raw-output)

oci nlb backend create --backend-set-name talos --network-load-balancer-id $network_load_balancer_id --port 50000 --target-id $instance_id
oci nlb backend create --backend-set-name controlplane --network-load-balancer-id $network_load_balancer_id --port 6443 --target-id $instance_id

Create the Worker Nodes

Create the worker nodes with the following command, repeating (and incrementing the name counter) as many times as desired.

export subnet_id=$(oci network subnet list --compartment-id=$compartment_id --display-name kubernetes --query data[0].id --raw-output)
export image_id=$(oci compute image list --compartment-id $compartment_id --operating-system Talos --limit 1 --query data[0].id --raw-output)
export availability_domain=$(oci iam availability-domain list --compartment-id=$compartment_id --query data[0].name --raw-output)
export shape='VM.Standard.E2.1.Micro'

oci compute instance launch --shape $shape --availability-domain $availability_domain --compartment-id $compartment_id --image-id $image_id --subnet-id $subnet_id --display-name worker-1 --assign-public-ip true --user-data-file worker.yaml

oci compute instance launch --shape $shape --availability-domain $availability_domain --compartment-id $compartment_id --image-id $image_id --subnet-id $subnet_id --display-name worker-2 --assign-public-ip true --user-data-file worker.yaml

oci compute instance launch --shape $shape --availability-domain $availability_domain --compartment-id $compartment_id --image-id $image_id --subnet-id $subnet_id --display-name worker-3 --assign-public-ip true --user-data-file worker.yaml

Bootstrap Etcd

To configure talosctl we will need the first control plane node’s IP. This can be found by issuing:

export instance_id=$(oci compute instance list --compartment-id $compartment_id --display-name controlplane-1 --query 'data[0].id' --raw-output)

oci compute instance list-vnics --instance-id $instance_id --query 'data[0]."private-ip"' --raw-output

Set the endpoints and nodes for your talosconfig with:

talosctl --talosconfig talosconfig config endpoint <load balancer IP or DNS>
talosctl --talosconfig talosconfig config node <control-plane-1-IP>

Bootstrap etcd on the first control plane node with:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig .

3.12 - Scaleway

Creating a cluster via the CLI (scw) on scaleway.com.

Talos is known to work on scaleway.com; however, it is currently undocumented.

3.13 - UpCloud

Creating a cluster via the CLI (upctl) on UpCloud.com.

In this guide we will create an HA Kubernetes cluster 3 control plane nodes and 1 worker node. We assume some familiarity with UpCloud. If you need more information on UpCloud specifics, please see the official UpCloud documentation.

Create the Image

The best way to create an image for UpCloud, is to build one using Hashicorp packer, with the upcloud-amd64.raw.xz image found on the Talos Releases. Using the general ISO is also possible, but the UpCloud image has some UpCloud specific features implemented, such as the fetching of metadata and user data to configure the nodes.

To create the cluster, you need a few things locally installed:

  1. UpCloud CLI
  2. Hashicorp Packer

NOTE: Make sure your account allows API connections. To do so, log into UpCloud control panel and go to People -> Account -> Permissions -> Allow API connections checkbox. It is recommended to create a separate subaccount for your API access and only set the API permission.

To use the UpCloud CLI, you need to create a config in $HOME/.config/upctl.yaml

username: your_upcloud_username
password: your_upcloud_password

To use the UpCloud packer plugin, you need to also export these credentials to your environment variables, by e.g. putting the following in your .bashrc or .zshrc

export UPCLOUD_USERNAME="<username>"
export UPCLOUD_PASSWORD="<password>"

Next create a config file for packer to use:

# upcloud.pkr.hcl

packer {
  required_plugins {
    upcloud = {
      version = ">=v1.0.0"
      source  = "github.com/UpCloudLtd/upcloud"
    }
  }
}

variable "talos_version" {
  type    = string
  default = "v1.8.0-alpha.0"
}

locals {
  image = "https://github.com/siderolabs/talos/releases/download/${var.talos_version}/upcloud-amd64.raw.xz"
}

variable "username" {
  type        = string
  description = "UpCloud API username"
  default     = "${env("UPCLOUD_USERNAME")}"
}

variable "password" {
  type        = string
  description = "UpCloud API password"
  default     = "${env("UPCLOUD_PASSWORD")}"
  sensitive   = true
}

source "upcloud" "talos" {
  username        = "${var.username}"
  password        = "${var.password}"
  zone            = "us-nyc1"
  storage_name    = "Debian GNU/Linux 11 (Bullseye)"
  template_name   = "Talos (${var.talos_version})"
}

build {
  sources = ["source.upcloud.talos"]

  provisioner "shell" {
    inline = [
      "apt-get install -y wget xz-utils",
      "wget -q -O /tmp/talos.raw.xz ${local.image}",
      "xz -d -c /tmp/talos.raw.xz | dd of=/dev/vda",
    ]
  }

  provisioner "shell-local" {
      inline = [
      "upctl server stop --type hard custom",
      ]
  }
}

Now create a new image by issuing the commands shown below.

packer init .
packer build .

After doing this, you can find the custom image in the console interface under storage.

Creating a Cluster via the CLI

Create an Endpoint

To communicate with the Talos cluster you will need a single endpoint that is used to access the cluster. This can either be a loadbalancer that will sit in front of all your control plane nodes, a DNS name with one or more A or AAAA records pointing to the control plane nodes, or directly the IP of a control plane node.

Which option is best for you will depend on your needs. Endpoint selection has been further documented here.

After you decide on which endpoint to use, note down the domain name or IP, as we will need it in the next step.

Create the Machine Configuration Files

Generating Base Configurations

Using the DNS name of the endpoint created earlier, generate the base configuration files for the Talos machines:

$ talosctl gen config talos-upcloud-tutorial https://<load balancer IP or DNS>:<port> --install-disk /dev/vda
created controlplane.yaml
created worker.yaml
created talosconfig

At this point, you can modify the generated configs to your liking. Depending on the Kubernetes version you want to run, you might need to select a different Talos version, as not all versions are compatible. You can find the support matrix here.

Optionally, you can specify --config-patch with RFC6902 jsonpatch or yamlpatch which will be applied during the config generation.

Validate the Configuration Files

$ talosctl validate --config controlplane.yaml --mode cloud
controlplane.yaml is valid for cloud mode
$ talosctl validate --config worker.yaml --mode cloud
worker.yaml is valid for cloud mode

Create the Servers

Create the Control Plane Nodes

Run the following to create three total control plane nodes:

for ID in $(seq 3); do
    upctl server create \
      --zone us-nyc1 \
      --title talos-us-nyc1-master-$ID \
      --hostname talos-us-nyc1-master-$ID \
      --plan 2xCPU-4GB \
      --os "Talos (v1.8.0-alpha.0)" \
      --user-data "$(cat controlplane.yaml)" \
      --enable-metada
done

Note: modify the zone and OS depending on your preferences. The OS should match the template name generated with packer in the previous step.

Note the IP address of the first control plane node, as we will need it later.

Create the Worker Nodes

Run the following to create a worker node:

upctl server create \
  --zone us-nyc1 \
  --title talos-us-nyc1-worker-1 \
  --hostname talos-us-nyc1-worker-1 \
  --plan 2xCPU-4GB \
  --os "Talos (v1.8.0-alpha.0)" \
  --user-data "$(cat worker.yaml)" \
  --enable-metada

Bootstrap Etcd

To configure talosctl we will need the first control plane node’s IP, as noted earlier. We only add one node IP, as that is the entry into our cluster against which our commands will be run. All requests to other nodes are proxied through the endpoint, and therefore not all nodes need to be manually added to the config. You don’t want to run your commands against all nodes, as this can destroy your cluster if you are not careful (further documentation).

Set the endpoints and nodes:

talosctl --talosconfig talosconfig config endpoint <control plane 1 IP>
talosctl --talosconfig talosconfig config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig talosconfig bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig talosconfig kubeconfig

It will take a few minutes before Kubernetes has been fully bootstrapped, and is accessible.

You can check if the nodes are registered in Talos by running

talosctl --talosconfig talosconfig get members

To check if your nodes are ready, run

kubectl get nodes

3.14 - Vultr

Creating a cluster via the CLI (vultr-cli) on Vultr.com.

Creating a Cluster using the Vultr CLI

This guide will demonstrate how to create a highly-available Kubernetes cluster with one worker using the Vultr cloud provider.

Vultr have a very well documented REST API, and an open-source CLI tool to interact with the API which will be used in this guide. Make sure to follow installation and authentication instructions for the vultr-cli tool.

Boot Options

Upload an ISO Image

First step is to make the Talos ISO available to Vultr by uploading the latest release of the ISO to the Vultr ISO server.

vultr-cli iso create --url https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/metal-amd64.iso

Make a note of the ID in the output, it will be needed later when creating the instances.

PXE Booting via Image Factory

Talos Linux can be PXE-booted on Vultr using Image Factory, using the vultr platform: e.g. https://pxe.factory.talos.dev/pxe/376567988ad370138ad8b2698212367b8edcb69b5fd68c80be1f2ec7d603b4ba/v1.8.0-alpha.0/vultr-amd64 (this URL references the default schematic and amd64 architecture).

Create a Load Balancer

A load balancer is needed to serve as the Kubernetes endpoint for the cluster.

vultr-cli load-balancer create \
   --region $REGION \
   --label "Talos Kubernetes Endpoint" \
   --port 6443 \
   --protocol tcp \
   --check-interval 10 \
   --response-timeout 5 \
   --healthy-threshold 5 \
   --unhealthy-threshold 3 \
   --forwarding-rules frontend_protocol:tcp,frontend_port:443,backend_protocol:tcp,backend_port:6443

Make a note of the ID of the load balancer from the output of the above command, it will be needed after the control plane instances are created.

vultr-cli load-balancer get $LOAD_BALANCER_ID | grep ^IP

Make a note of the IP address, it will be needed later when generating the configuration.

Create the Machine Configuration

Generate Base Configuration

Using the IP address (or DNS name if one was created) of the load balancer created above, generate the machine configuration files for the new cluster.

talosctl gen config talos-kubernetes-vultr https://$LOAD_BALANCER_ADDRESS

Once generated, the machine configuration can be modified as necessary for the new cluster, for instance updating disk installation, or adding SANs for the certificates.

Validate the Configuration Files

talosctl validate --config controlplane.yaml --mode cloud
talosctl validate --config worker.yaml --mode cloud

Create the Nodes

Create the Control Plane Nodes

First a control plane needs to be created, with the example below creating 3 instances in a loop. The instance type (noted by the --plan vc2-2c-4gb argument) in the example is for a minimum-spec control plane node, and should be updated to suit the cluster being created.

for id in $(seq 3); do
    vultr-cli instance create \
        --plan vc2-2c-4gb \
        --region $REGION \
        --iso $TALOS_ISO_ID \
        --host talos-k8s-cp${id} \
        --label "Talos Kubernetes Control Plane" \
        --tags talos,kubernetes,control-plane
done

Make a note of the instance IDs, as they are needed to attach to the load balancer created earlier.

vultr-cli load-balancer update $LOAD_BALANCER_ID --instances $CONTROL_PLANE_1_ID,$CONTROL_PLANE_2_ID,$CONTROL_PLANE_3_ID

Once the nodes are booted and waiting in maintenance mode, the machine configuration can be applied to each one in turn.

talosctl --talosconfig talosconfig apply-config --insecure --nodes $CONTROL_PLANE_1_ADDRESS --file controlplane.yaml
talosctl --talosconfig talosconfig apply-config --insecure --nodes $CONTROL_PLANE_2_ADDRESS --file controlplane.yaml
talosctl --talosconfig talosconfig apply-config --insecure --nodes $CONTROL_PLANE_3_ADDRESS --file controlplane.yaml

Create the Worker Nodes

Now worker nodes can be created and configured in a similar way to the control plane nodes, the difference being mainly in the machine configuration file. Note that like with the control plane nodes, the instance type (here set by --plan vc2-1-1gb) should be changed for the actual cluster requirements.

for id in $(seq 1); do
    vultr-cli instance create \
        --plan vc2-1c-1gb \
        --region $REGION \
        --iso $TALOS_ISO_ID \
        --host talos-k8s-worker${id} \
        --label "Talos Kubernetes Worker" \
        --tags talos,kubernetes,worker
done

Once the worker is booted and in maintenance mode, the machine configuration can be applied in the following manner.

talosctl --talosconfig talosconfig apply-config --insecure --nodes $WORKER_1_ADDRESS --file worker.yaml

Bootstrap etcd

Once all the cluster nodes are correctly configured, the cluster can be bootstrapped to become functional. It is important that the talosctl bootstrap command be executed only once and against only a single control plane node.

talosctl --talosconfig talosconfig boostrap --endpoints $CONTROL_PLANE_1_ADDRESS --nodes $CONTROL_PLANE_1_ADDRESS

Configure Endpoints and Nodes

While the cluster goes through the bootstrapping process and beings to self-manage, the talosconfig can be updated with the endpoints and nodes.

talosctl --talosconfig talosconfig config endpoints $CONTROL_PLANE_1_ADDRESS $CONTROL_PLANE_2_ADDRESS $CONTROL_PLANE_3_ADDRESS
talosctl --talosconfig talosconfig config nodes $CONTROL_PLANE_1_ADDRESS $CONTROL_PLANE_2_ADDRESS $CONTROL_PLANE_3_ADDRESS WORKER_1_ADDRESS

Retrieve the kubeconfig

Finally, with the cluster fully running, the administrative kubeconfig can be retrieved from the Talos API to be saved locally.

talosctl --talosconfig talosconfig kubeconfig .

Now the kubeconfig can be used by any of the usual Kubernetes tools to interact with the Talos-based Kubernetes cluster as normal.

4 - Local Platforms

Installation of Talos Linux on local platforms, helpful for testing and developing.

4.1 - Docker

Creating Talos Kubernetes cluster using Docker.

In this guide we will create a Kubernetes cluster in Docker, using a containerized version of Talos. Running Talos in Docker is intended to be used in CI pipelines, and local testing when you need a quick and easy cluster. It also provides an excellent way for developers to develop against the same version of Talos as is used in production.

Requirements

The follow are the requirements for running Talos in Docker:

  • Docker 18.03 or greater
  • a recent version of talosctl

Caveats

Due to the fact that Talos will be running in a container, certain APIs are not available. For example upgrade, reset, and similar APIs don’t apply in container mode. Further, when running on a Mac in docker, due to networking limitations, VIPs are not supported.

Create the Cluster

Creating a local cluster is as simple as:

talosctl cluster create

Once the above finishes, your talosconfig (~/.talos/config) and kubeconfig (~/.kube/config) will be configured to point to the new cluster.

Note: Startup times can take up to a minute or more before the cluster is available.

Finally, we just need to specify which nodes you want to communicate with using talosctl. Talosctl can operate on one or all the nodes in the cluster – this makes cluster wide commands much easier.

talosctl config nodes 10.5.0.2 10.5.0.3

Talos and Kubernetes API are mapped to a random port on the host machine, the retrieved talosconfig and kubeconfig are configured automatically to point to the new cluster. Talos API endpoint can be found using talosctl config info:

$ talosctl config info
...
Endpoints:           127.0.0.1:38423

Kubernetes API endpoint is available with talosctl cluster show:

$ talosctl cluster show
...
KUBERNETES ENDPOINT   https://127.0.0.1:43083

Using the Cluster

Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster. For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace. To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.

Cleaning Up

To cleanup, run:

talosctl cluster destroy

Multiple Clusters

Multiple Talos Linux cluster can be created on the same host, each cluster will need to have:

  • a unique name (default is talos-default)
  • a unique network CIDR (default is 10.5.0.0/24)

To create a new cluster, run:

talosctl cluster create --name cluster2 --cidr 10.6.0.0/24

To destroy a specific cluster, run:

talosctl cluster destroy --name cluster2

To switch between clusters, use --context flag:

talosctl --context cluster2 version
kubectl --context admin@cluster2 get nodes

Running Talos in Docker Manually

To run Talos in a container manually, run:

docker run --rm -it \
  --name tutorial \
  --hostname talos-cp \
  --read-only \
  --privileged \
  --security-opt seccomp=unconfined \
  --mount type=tmpfs,destination=/run \
  --mount type=tmpfs,destination=/system \
  --mount type=tmpfs,destination=/tmp \
  --mount type=volume,destination=/system/state \
  --mount type=volume,destination=/var \
  --mount type=volume,destination=/etc/cni \
  --mount type=volume,destination=/etc/kubernetes \
  --mount type=volume,destination=/usr/libexec/kubernetes \
  --mount type=volume,destination=/opt \
  -e PLATFORM=container \
  ghcr.io/siderolabs/talos:v1.8.0-alpha.0

The machine configuration submitted to the container should have a host DNS feature enabled with forwardKubeDNSToHost enabled. It is used to forward DNS requests to the resolver provided by Docker (or other container runtime).

4.2 - QEMU

Creating Talos Kubernetes cluster using QEMU VMs.

In this guide we will create a Kubernetes cluster using QEMU.

Video Walkthrough

To see a live demo of this writeup, see the video below:

Requirements

  • Linux
  • a kernel with
    • KVM enabled (/dev/kvm must exist)
    • CONFIG_NET_SCH_NETEM enabled
    • CONFIG_NET_SCH_INGRESS enabled
  • at least CAP_SYS_ADMIN and CAP_NET_ADMIN capabilities
  • QEMU
  • bridge, static and firewall CNI plugins from the standard CNI plugins, and tc-redirect-tap CNI plugin from the awslabs tc-redirect-tap installed to /opt/cni/bin (installed automatically by talosctl)
  • iptables
  • /var/run/netns directory should exist

Installation

How to get QEMU

Install QEMU with your operating system package manager. For example, on Ubuntu for x86:

apt install qemu-system-x86 qemu-kvm

Install talosctl

You can download talosctl an MacOS and Linux via:

brew install siderolabs/tap/talosctl

For manually installation and other platform please see the talosctl installation guide.

Install Talos kernel and initramfs

QEMU provisioner depends on Talos kernel (vmlinuz) and initramfs (initramfs.xz). These files can be downloaded from the Talos release:

mkdir -p _out/
curl https://github.com/siderolabs/talos/releases/download/<version>/vmlinuz-<arch> -L -o _out/vmlinuz-<arch>
curl https://github.com/siderolabs/talos/releases/download/<version>/initramfs-<arch>.xz -L -o _out/initramfs-<arch>.xz

For example version v1.8.0-alpha.0:

curl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/vmlinuz-amd64 -L -o _out/vmlinuz-amd64
curl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/initramfs-amd64.xz -L -o _out/initramfs-amd64.xz

Create the Cluster

For the first time, create root state directory as your user so that you can inspect the logs as non-root user:

mkdir -p ~/.talos/clusters

Create the cluster:

sudo --preserve-env=HOME talosctl cluster create --provisioner qemu

Before the first cluster is created, talosctl will download the CNI bundle for the VM provisioning and install it to ~/.talos/cni directory.

Once the above finishes successfully, your talosconfig (~/.talos/config) will be configured to point to the new cluster, and kubeconfig will be downloaded and merged into default kubectl config location (~/.kube/config).

Cluster provisioning process can be optimized with registry pull-through caches.

Using the Cluster

Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster. For example, to view current running containers, run talosctl -n 10.5.0.2 containers for a list of containers in the system namespace, or talosctl -n 10.5.0.2 containers -k for the k8s.io namespace. To view the logs of a container, use talosctl -n 10.5.0.2 logs <container> or talosctl -n 10.5.0.2 logs -k <container>.

A bridge interface will be created, and assigned the default IP 10.5.0.1. Each node will be directly accessible on the subnet specified at cluster creation time. A loadbalancer runs on 10.5.0.1 by default, which handles loadbalancing for the Kubernetes APIs.

You can see a summary of the cluster state by running:

$ talosctl cluster show --provisioner qemu
PROVISIONER       qemu
NAME              talos-default
NETWORK NAME      talos-default
NETWORK CIDR      10.5.0.0/24
NETWORK GATEWAY   10.5.0.1
NETWORK MTU       1500

NODES:

NAME                           TYPE           IP         CPU    RAM      DISK
talos-default-controlplane-1   ControlPlane   10.5.0.2   1.00   1.6 GB   4.3 GB
talos-default-controlplane-2   ControlPlane   10.5.0.3   1.00   1.6 GB   4.3 GB
talos-default-controlplane-3   ControlPlane   10.5.0.4   1.00   1.6 GB   4.3 GB
talos-default-worker-1         Worker         10.5.0.5   1.00   1.6 GB   4.3 GB

Cleaning Up

To cleanup, run:

sudo --preserve-env=HOME talosctl cluster destroy --provisioner qemu

Note: In that case that the host machine is rebooted before destroying the cluster, you may need to manually remove ~/.talos/clusters/talos-default.

Manual Clean Up

The talosctl cluster destroy command depends heavily on the clusters state directory. It contains all related information of the cluster. The PIDs and network associated with the cluster nodes.

If you happened to have deleted the state folder by mistake or you would like to cleanup the environment, here are the steps how to do it manually:

Remove VM Launchers

Find the process of talosctl qemu-launch:

ps -elf | grep 'talosctl qemu-launch'

To remove the VMs manually, execute:

sudo kill -s SIGTERM <PID>

Example output, where VMs are running with PIDs 157615 and 157617

ps -elf | grep '[t]alosctl qemu-launch'
0 S root      157615    2835  0  80   0 - 184934 -     07:53 ?        00:00:00 talosctl qemu-launch
0 S root      157617    2835  0  80   0 - 185062 -     07:53 ?        00:00:00 talosctl qemu-launch
sudo kill -s SIGTERM 157615
sudo kill -s SIGTERM 157617

Stopping VMs

Find the process of qemu-system:

ps -elf | grep 'qemu-system'

To stop the VMs manually, execute:

sudo kill -s SIGTERM <PID>

Example output, where VMs are running with PIDs 158065 and 158216

ps -elf | grep qemu-system
2 S root     1061663 1061168 26  80   0 - 1786238 -    14:05 ?        01:53:56 qemu-system-x86_64 -m 2048 -drive format=raw,if=virtio,file=/home/username/.talos/clusters/talos-default/bootstrap-master.disk -smp cpus=2 -cpu max -nographic -netdev tap,id=net0,ifname=tap0,script=no,downscript=no -device virtio-net-pci,netdev=net0,mac=1e:86:c6:b4:7c:c4 -device virtio-rng-pci -no-reboot -boot order=cn,reboot-timeout=5000 -smbios type=1,uuid=7ec0a73c-826e-4eeb-afd1-39ff9f9160ca -machine q35,accel=kvm
2 S root     1061663 1061170 67  80   0 - 621014 -     21:23 ?        00:00:07 qemu-system-x86_64 -m 2048 -drive format=raw,if=virtio,file=/homeusername/.talos/clusters/talos-default/pxe-1.disk -smp cpus=2 -cpu max -nographic -netdev tap,id=net0,ifname=tap0,script=no,downscript=no -device virtio-net-pci,netdev=net0,mac=36:f3:2f:c3:9f:06 -device virtio-rng-pci -no-reboot -boot order=cn,reboot-timeout=5000 -smbios type=1,uuid=ce12a0d0-29c8-490f-b935-f6073ab916a6 -machine q35,accel=kvm
sudo kill -s SIGTERM 1061663
sudo kill -s SIGTERM 1061663

Remove load balancer

Find the process of talosctl loadbalancer-launch:

ps -elf | grep 'talosctl loadbalancer-launch'

To remove the LB manually, execute:

sudo kill -s SIGTERM <PID>

Example output, where loadbalancer is running with PID 157609

ps -elf | grep '[t]alosctl loadbalancer-launch'
4 S root      157609    2835  0  80   0 - 184998 -     07:53 ?        00:00:07 talosctl loadbalancer-launch --loadbalancer-addr 10.5.0.1 --loadbalancer-upstreams 10.5.0.2
sudo kill -s SIGTERM 157609

Remove DHCP server

Find the process of talosctl dhcpd-launch:

ps -elf | grep 'talosctl dhcpd-launch'

To remove the LB manually, execute:

sudo kill -s SIGTERM <PID>

Example output, where loadbalancer is running with PID 157609

ps -elf | grep '[t]alosctl dhcpd-launch'
4 S root      157609    2835  0  80   0 - 184998 -     07:53 ?        00:00:07 talosctl dhcpd-launch --state-path /home/username/.talos/clusters/talos-default --addr 10.5.0.1 --interface talosbd9c32bc
sudo kill -s SIGTERM 157609

Remove network

This is more tricky part as if you have already deleted the state folder. If you didn’t then it is written in the state.yaml in the ~/.talos/clusters/<cluster-name> directory.

sudo cat ~/.talos/clusters/<cluster-name>/state.yaml | grep bridgename
bridgename: talos<uuid>

If you only had one cluster, then it will be the interface with name talos<uuid>

46: talos<uuid>: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default qlen 1000
    link/ether a6:72:f4:0a:d3:9c brd ff:ff:ff:ff:ff:ff
    inet 10.5.0.1/24 brd 10.5.0.255 scope global talos17c13299
       valid_lft forever preferred_lft forever
    inet6 fe80::a472:f4ff:fe0a:d39c/64 scope link
       valid_lft forever preferred_lft forever

To remove this interface:

sudo ip link del talos<uuid>

Remove state directory

To remove the state directory execute:

sudo rm -Rf /home/$USER/.talos/clusters/<cluster-name>

Troubleshooting

Logs

Inspect logs directory

sudo cat ~/.talos/clusters/<cluster-name>/*.log

Logs are saved under <cluster-name>-<role>-<node-id>.log

For example in case of k8s cluster name:

ls -la ~/.talos/clusters/k8s | grep log
-rw-r--r--. 1 root root      69415 Apr 26 20:58 k8s-master-1.log
-rw-r--r--. 1 root root      68345 Apr 26 20:58 k8s-worker-1.log
-rw-r--r--. 1 root root      24621 Apr 26 20:59 lb.log

Inspect logs during the installation

tail -f ~/.talos/clusters/<cluster-name>/*.log

4.3 - VirtualBox

Creating Talos Kubernetes cluster using VurtualBox VMs.

In this guide we will create a Kubernetes cluster using VirtualBox.

Video Walkthrough

To see a live demo of this writeup, visit Youtube here:

Installation

How to Get VirtualBox

Install VirtualBox with your operating system package manager or from the website. For example, on Ubuntu for x86:

apt install virtualbox

Install talosctl

You can download talosctl an MacOS and Linux via:

brew install siderolabs/tap/talosctl

For manually installation and other platform please see the talosctl installation guide.

Download ISO Image

Download the ISO image from the Talos release page. You can download metal-amd64.iso via github.com/siderolabs/talos/releases

mkdir -p _out/
curl https://github.com/siderolabs/talos/releases/download/<version>/metal-<arch>.iso -L -o _out/metal-<arch>.iso

For example version v1.8.0-alpha.0 for linux platform:

mkdir -p _out/
curl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/metal-amd64.iso -L -o _out/metal-amd64.iso

Create VMs

Start by creating a new VM by clicking the “New” button in the VirtualBox UI:

Supply a name for this VM, and specify the Type and Version:

Edit the memory to supply at least 2GB of RAM for the VM:

Proceed through the disk settings, keeping the defaults. You can increase the disk space if desired.

Once created, select the VM and hit “Settings”:

In the “System” section, supply at least 2 CPUs:

In the “Network” section, switch the network “Attached To” section to “Bridged Adapter”:

Finally, in the “Storage” section, select the optical drive and, on the right, select the ISO by browsing your filesystem:

Repeat this process for a second VM to use as a worker node. You can also repeat this for additional nodes desired.

Start Control Plane Node

Once the VMs have been created and updated, start the VM that will be the first control plane node. This VM will boot the ISO image specified earlier and enter “maintenance mode”. Once the machine has entered maintenance mode, there will be a console log that details the IP address that the node received. Take note of this IP address, which will be referred to as $CONTROL_PLANE_IP for the rest of this guide. If you wish to export this IP as a bash variable, simply issue a command like export CONTROL_PLANE_IP=1.2.3.4.

Generate Machine Configurations

With the IP address above, you can now generate the machine configurations to use for installing Talos and Kubernetes. Issue the following command, updating the output directory, cluster name, and control plane IP as you see fit:

talosctl gen config talos-vbox-cluster https://$CONTROL_PLANE_IP:6443 --output-dir _out

This will create several files in the _out directory: controlplane.yaml, worker.yaml, and talosconfig.

Create Control Plane Node

Using the controlplane.yaml generated above, you can now apply this config using talosctl. Issue:

talosctl apply-config --insecure --nodes $CONTROL_PLANE_IP --file _out/controlplane.yaml

You should now see some action in the VirtualBox console for this VM. Talos will be installed to disk, the VM will reboot, and then Talos will configure the Kubernetes control plane on this VM.

Note: This process can be repeated multiple times to create an HA control plane.

Create Worker Node

Create at least a single worker node using a process similar to the control plane creation above. Start the worker node VM and wait for it to enter “maintenance mode”. Take note of the worker node’s IP address, which will be referred to as $WORKER_IP

Issue:

talosctl apply-config --insecure --nodes $WORKER_IP --file _out/worker.yaml

Note: This process can be repeated multiple times to add additional workers.

Using the Cluster

Once the cluster is available, you can make use of talosctl and kubectl to interact with the cluster. For example, to view current running containers, run talosctl containers for a list of containers in the system namespace, or talosctl containers -k for the k8s.io namespace. To view the logs of a container, use talosctl logs <container> or talosctl logs -k <container>.

First, configure talosctl to talk to your control plane node by issuing the following, updating paths and IPs as necessary:

export TALOSCONFIG="_out/talosconfig"
talosctl config endpoint $CONTROL_PLANE_IP
talosctl config node $CONTROL_PLANE_IP

Bootstrap Etcd

Set the endpoints and nodes:

talosctl --talosconfig $TALOSCONFIG config endpoint <control plane 1 IP>
talosctl --talosconfig $TALOSCONFIG config node <control plane 1 IP>

Bootstrap etcd:

talosctl --talosconfig $TALOSCONFIG bootstrap

Retrieve the kubeconfig

At this point we can retrieve the admin kubeconfig by running:

talosctl --talosconfig $TALOSCONFIG kubeconfig .

You can then use kubectl in this fashion:

kubectl get nodes

Cleaning Up

To cleanup, simply stop and delete the virtual machines from the VirtualBox UI.

5 - Single Board Computers

Installation of Talos Linux on single-board computers.

5.1 - Banana Pi M64

Installing Talos on Banana Pi M64 SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image using Image Factory

The default schematic id for “vanilla” Banana Pi M64 is 8e11dcb3c2803fbe893ab201fcadf1ef295568410e7ced95c6c8b122a5070ce4. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/8e11dcb3c2803fbe893ab201fcadf1ef295568410e7ced95c6c8b122a5070ce4/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/8e11dcb3c2803fbe893ab201fcadf1ef295568410e7ced95c6c8b122a5070ce4:v1.8.0-alpha.0

5.2 - Friendlyelec Nano PI R4S

Installing Talos on a Nano PI R4S SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” NanoPi R4S is 5f74a09891d5830f0b36158d3d9ea3b1c9cc019848ace08ff63ba255e38c8da4. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/5f74a09891d5830f0b36158d3d9ea3b1c9cc019848ace08ff63ba255e38c8da4/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/5f74a09891d5830f0b36158d3d9ea3b1c9cc019848ace08ff63ba255e38c8da4:v1.8.0-alpha.0

5.3 - Jetson Nano

Installing Talos on Jetson Nano SBC using raw disk image.

Prerequisites

You will need

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Flashing the firmware to on-board SPI flash

Flashing the firmware only needs to be done once.

We will use the R32.7.2 release for the Jetson Nano. Most of the instructions is similar to this doc except that we’d be using a upstream version of u-boot with patches from NVIDIA u-boot so that USB boot also works.

Before flashing we need the following:

  • A USB-A to micro USB cable
  • A jumper wire to enable recovery mode
  • A HDMI monitor to view the logs if the USB serial adapter is not available
  • A USB to Serial adapter with 3.3V TTL (optional)
  • A 5V DC barrel jack

If you’re planning to use the serial console follow the documentation here

First start by downloading the Jetson Nano L4T release.

curl -SLO https://developer.nvidia.com/embedded/l4t/r32_release_v7.1/t210/jetson-210_linux_r32.7.2_aarch64.tbz2

Next we will extract the L4T release and replace the u-boot binary with the patched version.

tar xf jetson-210_linux_r32.6.1_aarch64.tbz2
cd Linux_for_Tegra
crane --platform=linux/arm64 export ghcr.io/siderolabs/sbc-jetson:v0.1.0 - | tar xf - --strip-components=4 -C bootloader/t210ref/p3450-0000/ artifacts/arm64/u-boot/jetson_nano/u-boot.bin

Next we will flash the firmware to the Jetson Nano SPI flash. In order to do that we need to put the Jetson Nano into Force Recovery Mode (FRC). We will use the instructions from here

  • Ensure that the Jetson Nano is powered off. There is no need for the SD card/USB storage/network cable to be connected
  • Connect the micro USB cable to the micro USB port on the Jetson Nano, don’t plug the other end to the PC yet
  • Enable Force Recovery Mode (FRC) by placing a jumper across the FRC pins on the Jetson Nano
    • For board revision A02, these are pins 3 and 4 of header J40
    • For board revision B01, these are pins 9 and 10 of header J50
  • Place another jumper across J48 to enable power from the DC jack and connect the Jetson Nano to the DC jack J25
  • Now connect the other end of the micro USB cable to the PC and remove the jumper wire from the FRC pins

Now the Jetson Nano is in Force Recovery Mode (FRC) and can be confirmed by running the following command

lsusb | grep -i "nvidia"

Now we can move on the flashing the firmware.

sudo ./flash p3448-0000-max-spi external

This will flash the firmware to the Jetson Nano SPI flash and you’ll see a lot of output. If you’ve connected the serial console you’ll also see the progress there. Once the flashing is done you can disconnect the USB cable and power off the Jetson Nano.

Download the Image

The default schematic id for “vanilla” Jetson Nano is c7d6f36c6bdfb45fd63178b202a67cff0dd270262269c64886b43f76880ecf1e. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/c7d6f36c6bdfb45fd63178b202a67cff0dd270262269c64886b43f76880ecf1e/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

Now dd the image to your SD card/USB storage:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M status=progress

| Replace /dev/mmcblk0 with the name of your SD card/USB storage.

Bootstrapping the Node

Insert the SD card/USB storage to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/c7d6f36c6bdfb45fd63178b202a67cff0dd270262269c64886b43f76880ecf1e:v1.8.0-alpha.0

5.4 - Libre Computer Board ALL-H3-CC

Installing Talos on Libre Computer Board ALL-H3-CC SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” Libretech H3 CC H5 is 5689d7795f91ac5bf6ccc85093fad8f8b27f6ea9d96a9ac5a059997bffd8ad5c. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/5689d7795f91ac5bf6ccc85093fad8f8b27f6ea9d96a9ac5a059997bffd8ad5c/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node.

Create a installer-patch.yaml containing reference to the installer image generated from an overlay: Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/5689d7795f91ac5bf6ccc85093fad8f8b27f6ea9d96a9ac5a059997bffd8ad5c:v1.8.0-alpha.0

5.5 - Orange Pi R1 Plus LTS

Installing Talos on Orange Pi R1 Plus LTS SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image using Image Factory

The default schematic id for “vanilla” Orange Pi R1 Plus LTS is da388062cd9318efdc7391982a77ebb2a97ed4fbda68f221354c17839a750509. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/da388062cd9318efdc7391982a77ebb2a97ed4fbda68f221354c17839a750509/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/da388062cd9318efdc7391982a77ebb2a97ed4fbda68f221354c17839a750509:v1.8.0-alpha.0

5.6 - Pine64

Installing Talos on a Pine64 SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” Pine64 is 185431e0f0bf34c983c6f47f4c6d3703aa2f02cd202ca013216fd71ffc34e175. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/185431e0f0bf34c983c6f47f4c6d3703aa2f02cd202ca013216fd71ffc34e175/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/185431e0f0bf34c983c6f47f4c6d3703aa2f02cd202ca013216fd71ffc34e175:v1.8.0-alpha.0

5.7 - Pine64 Rock64

Installing Talos on Pine64 Rock64 SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” Pine64 Rock64 is 0e162298269125049a51ec0a03c2ef85405a55e1d2ac36a7ef7292358cf3ce5a. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/0e162298269125049a51ec0a03c2ef85405a55e1d2ac36a7ef7292358cf3ce5a/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/0e162298269125049a51ec0a03c2ef85405a55e1d2ac36a7ef7292358cf3ce5a:v1.8.0-alpha.0

5.8 - Radxa ROCK 4C Plus

Installing Talos on Radxa ROCK 4c Plus SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card or an eMMC or USB drive or an nVME drive

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” Rock 4c Plus is ed7091ab924ef1406dadc4623c90f245868f03d262764ddc2c22c8a19eb37c1c. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/ed7091ab924ef1406dadc4623c90f245868f03d262764ddc2c22c8a19eb37c1c/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card/eMMC/USB/nVME can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

The user has two options to proceed:

  • booting from a SD card or eMMC

Booting from SD card or eMMC

Insert the SD card into the board, turn it on and proceed to bootstrapping the node.

Bootstrapping the Node

Wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/ed7091ab924ef1406dadc4623c90f245868f03d262764ddc2c22c8a19eb37c1c:v1.8.0-alpha.0

5.9 - Radxa ROCK PI 4

Installing Talos on Radxa ROCK PI 4a/4b SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card or an eMMC or USB drive or an nVME drive

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” RockPi 4 is 25d2690bb48685de5939edd6dee83a0e09591311e64ad03c550de00f8a521f51. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/25d2690bb48685de5939edd6dee83a0e09591311e64ad03c550de00f8a521f51/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card/eMMC/USB/nVME can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

The user has two options to proceed:

  • booting from a SD card or eMMC
  • booting from a USB or nVME (requires the RockPi board to have the SPI flash)

Booting from SD card or eMMC

Insert the SD card into the board, turn it on and proceed to bootstrapping the node.

Booting from USB or nVME

This requires the user to flash the RockPi SPI flash with u-boot.

Follow the Radxa docs on Install on M.2 NVME SSD

After these above steps, Talos will boot from the nVME/USB and enter maintenance mode. Proceed to bootstrapping the node.

Bootstrapping the Node

Wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/25d2690bb48685de5939edd6dee83a0e09591311e64ad03c550de00f8a521f51:v1.8.0-alpha.0

5.10 - Radxa ROCK PI 4C

Installing Talos on Radxa ROCK PI 4c SBC using raw disk image.

Prerequisites

You will need

  • talosctl
  • an SD card or an eMMC or USB drive or an nVME drive

Download the latest talosctl.

curl -Lo /usr/local/bin/talosctl https://github.com/siderolabs/talos/releases/download/v1.8.0-alpha.0/talosctl-$(uname -s | tr "[:upper:]" "[:lower:]")-amd64
chmod +x /usr/local/bin/talosctl

Download the Image

The default schematic id for “vanilla” RockPi 4c is 08e72e242b71f42c9db5bed80e8255b2e0d442a372bc09055b79537d9e3ce191. Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/08e72e242b71f42c9db5bed80e8255b2e0d442a372bc09055b79537d9e3ce191/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

The path to your SD card/eMMC/USB/nVME can be found using fdisk on Linux or diskutil on macOS. In this example, we will assume /dev/mmcblk0.

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

The user has two options to proceed:

  • booting from a SD card or eMMC
  • booting from a USB or nVME (requires the RockPi board to have the SPI flash)

Booting from SD card or eMMC

Insert the SD card into the board, turn it on and proceed to bootstrapping the node.

Booting from USB or nVME

This requires the user to flash the RockPi SPI flash with u-boot.

Follow the Radxa docs on Install on M.2 NVME SSD

After these above steps, Talos will boot from the nVME/USB and enter maintenance mode. Proceed to bootstrapping the node.

Bootstrapping the Node

Wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/08e72e242b71f42c9db5bed80e8255b2e0d442a372bc09055b79537d9e3ce191:v1.8.0-alpha.0

5.11 - Raspberry Pi Series

Installing Talos on Raspberry Pi SBC’s using raw disk image.

Talos disk image for the Raspberry Pi generic should in theory work for the boards supported by u-boot rpi_arm64_defconfig. This has only been officialy tested on the Raspberry Pi 4 and community tested on one variant of the Compute Module 4 using Super 6C boards. If you have tested this on other Raspberry Pi boards, please let us know.

Video Walkthrough

To see a live demo of this writeup, see the video below:

Prerequisites

You will need

  • talosctl
  • an SD card

Download the latest talosctl.

curl -sL 'https://www.talos.dev/install' | bash

Updating the EEPROM

Use Raspberry Pi Imager to write an EEPROM update image to a spare SD card. Select Misc utility images under the Operating System tab.

Remove the SD card from your local machine and insert it into the Raspberry Pi. Power the Raspberry Pi on, and wait at least 10 seconds. If successful, the green LED light will blink rapidly (forever), otherwise an error pattern will be displayed. If an HDMI display is attached to the port closest to the power/USB-C port, the screen will display green for success or red if a failure occurs. Power off the Raspberry Pi and remove the SD card from it.

Note: Updating the bootloader only needs to be done once.

Download the Image

The default schematic id for “vanilla” Raspberry Pi generic image is ee21ef4a5ef808a9b7484cc0dda0f25075021691c8c09a276591eedb638ea1f9.Refer to the Image Factory documentation for more information.

Download the image and decompress it:

curl -LO https://factory.talos.dev/image/ee21ef4a5ef808a9b7484cc0dda0f25075021691c8c09a276591eedb638ea1f9/v1.8.0-alpha.0/metal-arm64.raw.xz
xz -d metal-arm64.raw.xz

Writing the Image

Now dd the image to your SD card:

sudo dd if=metal-arm64.raw of=/dev/mmcblk0 conv=fsync bs=4M

Bootstrapping the Node

Insert the SD card to your board, turn it on and wait for the console to show you the instructions for bootstrapping the node. Following the instructions in the console output to connect to the interactive installer:

talosctl apply-config --insecure --mode=interactive --nodes <node IP or DNS name>

Once the interactive installation is applied, the cluster will form and you can then use kubectl.

Note: if you have an HDMI display attached and it shows only a rainbow splash, please use the other HDMI port, the one closest to the power/USB-C port.

Retrieve the kubeconfig

Retrieve the admin kubeconfig by running:

talosctl kubeconfig

Upgrading

For example, to upgrade to the latest version of Talos, you can run:

talosctl -n <node IP or DNS name> upgrade --image=factory.talos.dev/installer/ee21ef4a5ef808a9b7484cc0dda0f25075021691c8c09a276591eedb638ea1f9:v1.8.0-alpha.0

Troubleshooting

The following table can be used to troubleshoot booting issues:

Long FlashesShort FlashesStatus
03Generic failure to boot
04start*.elf not found
07Kernel image not found
08SDRAM failure
09Insufficient SDRAM
010In HALT state
21Partition not FAT
22Failed to read from partition
23Extended partition not FAT
24File signature/hash mismatch - Pi 4
44Unsupported board type
45Fatal firmware error
46Power failure type A
47Power failure type B

6 - Boot Assets

Creating customized Talos boot assets, disk images, ISO and installer images.

Talos Linux provides a set of pre-built images on the release page, but these images can be customized further for a specific use case:

There are two ways to generate Talos boot assets:

Image Factory is easier to use, but it only produces images for official Talos Linux releases, official Talos Linux system extensions and official Talos Overlays.

The imager container can be used to generate images from main branch, with local changes, or with custom system extensions.

Image Factory

Image Factory is a service that generates Talos boot assets on-demand. Image Factory allows to generate boot assets for the official Talos Linux releases, official Talos Linux system extensions and official Talos Overlays.

The main concept of the Image Factory is a schematic which defines the customization of the boot asset. Once the schematic is configured, Image Factory can be used to pull various Talos Linux images, ISOs, installer images, PXE booting bare-metal machines across different architectures, versions of Talos and platforms.

Sidero Labs maintains a public Image Factory instance at https://factory.talos.dev. Image Factory provides a simple UI to prepare schematics and retrieve asset links.

Example: Bare-metal with Image Factory

Let’s assume we want to boot Talos on a bare-metal machine with Intel CPU and add a gvisor container runtime to the image. Also we want to disable predictable network interface names with net.ifnames=0 kernel argument.

First, let’s create the schematic file bare-metal.yaml:

# bare-metal.yaml
customization:
  extraKernelArgs:
    - net.ifnames=0
  systemExtensions:
    officialExtensions:
      - siderolabs/gvisor
      - siderolabs/intel-ucode

The schematic doesn’t contain system extension versions, Image Factory will pick the correct version matching Talos Linux release.

And now we can upload the schematic to the Image Factory to retrieve its ID:

$ curl -X POST --data-binary @bare-metal.yaml https://factory.talos.dev/schematics
{"id":"b8e8fbbe1b520989e6c52c8dc8303070cb42095997e76e812fa8892393e1d176"}

The returned schematic ID b8e8fbbe1b520989e6c52c8dc8303070cb42095997e76e812fa8892393e1d176 we will use to generate the boot assets.

The schematic ID is based on the schematic contents, so uploading the same schematic will return the same ID.

Now we have two options to boot our bare-metal machine:

The Image Factory URL contains both schematic ID and Talos version, and both can be changed to generate different boot assets.

Once the bare-metal machine is booted up for the first time, it will require Talos Linux installer image to be installed on the disk. The installer image will be produced by the Image Factory as well:

# Talos machine configuration patch
machine:
  install:
    image: factory.talos.dev/installer/b8e8fbbe1b520989e6c52c8dc8303070cb42095997e76e812fa8892393e1d176:v1.8.0-alpha.0

Once installed, the machine can be upgraded to a new version of Talos by referencing new installer image:

talosctl upgrade --image factory.talos.dev/installer/b8e8fbbe1b520989e6c52c8dc8303070cb42095997e76e812fa8892393e1d176:<new_version>

Same way upgrade process can be used to transition to a new set of system extensions: generate new schematic with the new set of system extensions, and upgrade the machine to the new schematic ID:

talosctl upgrade --image factory.talos.dev/installer/<new_schematic_id>:v1.8.0-alpha.0

Example: Raspberry Pi generic with Image Factory

Let’s assume we want to boot Talos on a Raspberry Pi with iscsi-tools system extension.

First, let’s create the schematic file rpi_generic.yaml:

# rpi_generic.yaml
overlay:
  name: rpi_generic
  image: siderolabs/sbc-raspberrypi
customization:
  systemExtensions:
    officialExtensions:
      - siderolabs/iscsi-tools

The schematic doesn’t contain any system extension or overlay versions, Image Factory will pick the correct version matching Talos Linux release.

And now we can upload the schematic to the Image Factory to retrieve its ID:

$ curl -X POST --data-binary @rpi_generic.yaml https://factory.talos.dev/schematics
{"id":"0db665edfda21c70194e7ca660955425d16cec2aa58ff031e2abf72b7c328585"}

The returned schematic ID 0db665edfda21c70194e7ca660955425d16cec2aa58ff031e2abf72b7c328585 we will use to generate the boot assets.

The schematic ID is based on the schematic contents, so uploading the same schematic will return the same ID.

Now we can download the metal arm64 image:

The Image Factory URL contains both schematic ID and Talos version, and both can be changed to generate different boot assets.

Once installed, the machine can be upgraded to a new version of Talos by referencing new installer image:

talosctl upgrade --image factory.talos.dev/installer/0db665edfda21c70194e7ca660955425d16cec2aa58ff031e2abf72b7c328585:<new_version>

Same way upgrade process can be used to transition to a new set of system extensions: generate new schematic with the new set of system extensions, and upgrade the machine to the new schematic ID:

talosctl upgrade --image factory.talos.dev/installer/<new_schematic_id>:v1.8.0-alpha.0

Example: AWS with Image Factory

Talos Linux is installed on AWS from a disk image (AWS AMI), so only a single boot asset is required. Let’s assume we want to boot Talos on AWS with gvisor container runtime system extension.

First, let’s create the schematic file aws.yaml:

# aws.yaml
customization:
  systemExtensions:
    officialExtensions:
      - siderolabs/gvisor

And now we can upload the schematic to the Image Factory to retrieve its ID:

$ curl -X POST --data-binary @aws.yaml https://factory.talos.dev/schematics
{"id":"d9ff89777e246792e7642abd3220a616afb4e49822382e4213a2e528ab826fe5"}

The returned schematic ID d9ff89777e246792e7642abd3220a616afb4e49822382e4213a2e528ab826fe5 we will use to generate the boot assets.

Now we can download the AWS disk image from the Image Factory:

curl -LO https://factory.talos.dev/image/d9ff89777e246792e7642abd3220a616afb4e49822382e4213a2e528ab826fe5/v1.8.0-alpha.0/aws-amd64.raw.xz

Now the aws-amd64.raw.xz file contains the customized Talos AWS disk image which can be uploaded as an AMI to the AWS.

Once the AWS VM is created from the AMI, it can be upgraded to a different Talos version or a different schematic using talosctl upgrade:

# upgrade to a new Talos version
talosctl upgrade --image factory.talos.dev/installer/d9ff89777e246792e7642abd3220a616afb4e49822382e4213a2e528ab826fe5:<new_version>
# upgrade to a new schematic
talosctl upgrade --image factory.talos.dev/installer/<new_schematic_id>:v1.8.0-alpha.0

Imager

A custom disk image, boot asset can be generated by using the Talos Linux imager container: ghcr.io/siderolabs/imager:v1.8.0-alpha.0. The imager container image can be checked by verifying its signature.

The generation process can be run with a simple docker run command:

docker run --rm -t -v $PWD/_out:/secureboot:ro -v $PWD/_out:/out -v /dev:/dev --privileged ghcr.io/siderolabs/imager:v1.8.0-alpha.0 <image-kind> [optional: customization]

A quick guide to the flags used for docker run:

  • --rm flag removes the container after the run (as it’s not going to be used anymore)
  • -t attaches a terminal for colorized output, it can be removed if used in scripts
  • -v $PWD/_out:/secureboot:ro mounts the SecureBoot keys into the container (can be skipped if not generating SecureBoot image)
  • -v $PWD/_out:/out mounts the output directory (where the generated image will be placed) into the container
  • -v /dev:/dev --privileged is required to generate disk images (loop devices are used), but not required for ISOs, installer container images

The <image-kind> argument to the imager defines the base profile to be used for the image generation. There are several built-in profiles:

  • iso builds a Talos ISO image (see ISO)
  • secureboot-iso builds a Talos ISO image with SecureBoot (see SecureBoot)
  • metal builds a generic disk image for bare-metal machines
  • secureboot-metal builds a generic disk image for bare-metal machines with SecureBoot
  • secureboot-installer builds an installer container image with SecureBoot (see SecureBoot)
  • aws, gcp, azure, etc. builds a disk image for a specific Talos platform

The base profile can be customized with the additional flags to the imager:

  • --arch specifies the architecture of the image to be generated (default: host architecture)
  • --meta allows to set initial META values
  • --extra-kernel-arg allows to customize the kernel command line arguments. Default kernel arg can be removed by prefixing the argument with a -. For example -console removes all console=<value> arguments, whereas -console=tty0 removes the console=tty0 default argument.
  • --system-extension-image allows to install a system extension into the image

Extension Image Reference

While Image Factory automatically resolves the extension name into a matching container image for a specific version of Talos, imager requires the full explicit container image reference. The imager also allows to install custom extensions which are not part of the official Talos Linux system extensions.

To get the official Talos Linux system extension container image reference matching a Talos release, use the following command:

crane export ghcr.io/siderolabs/extensions:v1.8.0-alpha.0 | tar x -O image-digests | grep EXTENSION-NAME

Note: this command is using crane tool, but any other tool which allows to export the image contents can be used.

For each Talos release, the ghcr.io/siderolabs/extensions:VERSION image contains a pinned reference to each system extension container image.

Overlay Image Reference

While Image Factory automatically resolves the overlay name into a matching container image for a specific version of Talos, imager requires the full explicit container image reference. The imager also allows to install custom overlays which are not part of the official Talos overlays.

To get the official Talos overlays container image reference matching a Talos release, use the following command:

crane export ghcr.io/siderolabs/overlays:v1.8.0-alpha.0 | tar x -O overlays.yaml

Note: this command is using crane tool, but any other tool which allows to export the image contents can be used.

For each Talos release, the ghcr.io/siderolabs/overlays:VERSION image contains a pinned reference to each overlay container image.

Pulling from Private Registries

Talos Linux official images are all public, but when pulling a custom image from a private registry, the imager might need authentication to access the images.

The imager container when pulling images supports following methods to authenticate to an external registry:

  • for ghcr.io registry, GITHUB_TOKEN can be provided as an environment variable;
  • for other registries, ~/.docker/config.json can be mounted into the container from the host:
    • another option is to use a DOCKER_CONFIG environment variable, and the path will be $DOCKER_CONFIG/config.json in the container;
    • the third option is to mount Podman’s auth file at $XDG_RUNTIME_DIR/containers/auth.json.

Example: Bare-metal with Imager

Let’s assume we want to boot Talos on a bare-metal machine with Intel CPU and add a gvisor container runtime to the image. Also we want to disable predictable network interface names with net.ifnames=0 kernel argument and replace the Talos default console arguments and add a custom console arg.

First, let’s lookup extension images for Intel CPU microcode updates and gvisor container runtime in the extensions repository:

$ crane export ghcr.io/siderolabs/extensions:v1.8.0-alpha.0 | tar x -O image-digests | grep -E 'gvisor|intel-ucode'
ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e
ghcr.io/siderolabs/intel-ucode:20231114@sha256:ea564094402b12a51045173c7523f276180d16af9c38755a894cf355d72c249d

Now we can generate the ISO image with the following command:

$ docker run --rm -t -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 iso --system-extension-image ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e --system-extension-image ghcr.io/siderolabs/intel-ucode:20231114@sha256:ea564094402b12a51045173c7523f276180d16af9c38755a894cf355d72c249d --extra-kernel-arg net.ifnames=0 --extra-kernel-arg=-console --extra-kernel-arg=console=ttyS1
profile ready:
arch: amd64
platform: metal
secureboot: false
version: v1.8.0-alpha.0
customization:
  extraKernelArgs:
    - net.ifnames=0
input:
  kernel:
    path: /usr/install/amd64/vmlinuz
  initramfs:
    path: /usr/install/amd64/initramfs.xz
  baseInstaller:
    imageRef: ghcr.io/siderolabs/installer:v1.8.0-alpha.0
  systemExtensions:
    - imageRef: ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e
    - imageRef: ghcr.io/siderolabs/intel-ucode:20231114@sha256:ea564094402b12a51045173c7523f276180d16af9c38755a894cf355d72c249d
output:
  kind: iso
  outFormat: raw
initramfs ready
kernel command line: talos.platform=metal console=ttyS1 init_on_alloc=1 slab_nomerge pti=on consoleblank=0 nvme_core.io_timeout=4294967295 printk.devkmsg=on ima_template=ima-ng ima_appraise=fix ima_hash=sha512 net.ifnames=0
ISO ready
output asset path: /out/metal-amd64.iso

Now the _out/metal-amd64.iso contains the customized Talos ISO image.

If the machine is going to be booted using PXE, we can instead generate kernel and initramfs images:

docker run --rm -t -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 iso --output-kind kernel
docker run --rm -t -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 iso --output-kind initramfs --system-extension-image ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e --system-extension-image ghcr.io/siderolabs/intel-ucode:20231114@sha256:ea564094402b12a51045173c7523f276180d16af9c38755a894cf355d72c249d

Now the _out/kernel-amd64 and _out/initramfs-amd64 contain the customized Talos kernel and initramfs images.

Note: the extra kernel args are not used now, as they are set via the PXE boot process, and can’t be embedded into the kernel or initramfs.

As the next step, we should generate a custom installer image which contains all required system extensions (kernel args can’t be specified with the installer image, but they are set in the machine configuration):

$ docker run --rm -t -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 installer --system-extension-image ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e --system-extension-image ghcr.io/siderolabs/intel-ucode:20231114@sha256:ea564094402b12a51045173c7523f276180d16af9c38755a894cf355d72c249d
...
output asset path: /out/metal-amd64-installer.tar

The installer container image should be pushed to the container registry:

crane push _out/metal-amd64-installer.tar ghcr.io/<username></username>/installer:v1.8.0-alpha.0

Now we can use the customized installer image to install Talos on the bare-metal machine.

When it’s time to upgrade a machine, a new installer image can be generated using the new version of imager, and updating the system extension images to the matching versions. The custom installer image can now be used to upgrade Talos machine.

Example: Raspberry Pi overlay with Imager

Let’s assume we want to boot Talos on Raspberry Pi with rpi_generic overlay and iscsi-tools system extension.

First, let’s lookup extension images for iscsi-tools in the extensions repository:

$ crane export ghcr.io/siderolabs/extensions:v1.8.0-alpha.0 | tar x -O image-digests | grep -E 'iscsi-tools'
ghcr.io/siderolabs/iscsi-tools:v0.1.4@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e

Next we’ll lookup the overlay image for rpi_generic in the overlays repository:

$ crane export ghcr.io/siderolabs/overlays:v1.8.0-alpha.0 | tar x -O overlays.yaml | yq '.overlays[] | select(.name=="rpi_generic")'
name: rpi_generic
image: ghcr.io/siderolabs/sbc-raspberrypi:v0.1.0
digest: sha256:849ace01b9af514d817b05a9c5963a35202e09a4807d12f8a3ea83657c76c863

Now we can generate the metal image with the following command:

$ docker run --rm -t -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 rpi_generic --arch arm64 --system-extension-image ghcr.io/siderolabs/iscsi-tools:v0.1.4@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e --overlay-image ghcr.io/siderolabs/sbc-raspberrypi:v0.1.0@sha256:849ace01b9af514d817b05a9c5963a35202e09a4807d12f8a3ea83657c76c863 --overlay-name=rpi_generic
profile ready:
arch: arm64
platform: metal
secureboot: false
version: v1.8.0-alpha.0
input:
  kernel:
    path: /usr/install/arm64/vmlinuz
  initramfs:
    path: /usr/install/arm64/initramfs.xz
  baseInstaller:
    imageRef: ghcr.io/siderolabs/installer:v1.8.0-alpha.0
  systemExtensions:
    - imageRef: ghcr.io/siderolabs/iscsi-tools:v0.1.4@sha256:a68c268d40694b7b93c8ac65d6b99892a6152a2ee23fdbffceb59094cc3047fc
overlay:
  name: rpi_generic
  image:
    imageRef: ghcr.io/siderolabs/sbc-raspberrypi:v0.1.0-alpha.1@sha256:849ace01b9af514d817b05a9c5963a35202e09a4807d12f8a3ea83657c76c863
output:
  kind: image
  imageOptions:
    diskSize: 1306525696
    diskFormat: raw
  outFormat: .xz
initramfs ready
kernel command line: talos.platform=metal console=tty0 console=ttyAMA0,115200 sysctl.kernel.kexec_load_disabled=1 talos.dashboard.disabled=1 init_on_alloc=1 slab_nomerge pti=on consoleblank=0 nvme_core.io_timeout=4294967295 printk.devkmsg=on ima_template=ima-ng ima_appraise=fix ima_hash=sha512
disk image ready
output asset path: /out/metal-arm64.raw
compression done: /out/metal-arm64.raw.xz

Now the _out/metal-arm64.raw.xz is the compressed disk image which can be written to a boot media.

As the next step, we should generate a custom installer image which contains all required system extensions (kernel args can’t be specified with the installer image, but they are set in the machine configuration):

$ docker run --rm -t -v $PWD/_out:/out ghcr.io/siderolabs/imager:v1.8.0-alpha.0 installer --arch arm64 --system-extension-image ghcr.io/siderolabs/iscsi-tools:v0.1.4@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e --overlay-image ghcr.io/siderolabs/sbc-raspberrypi:v0.1.0@sha256:849ace01b9af514d817b05a9c5963a35202e09a4807d12f8a3ea83657c76c863 --overlay-name=rpi_generic
...
output asset path: /out/metal-arm64-installer.tar

The installer container image should be pushed to the container registry:

crane push _out/metal-arm64-installer.tar ghcr.io/<username></username>/installer:v1.8.0-alpha.0

Now we can use the customized installer image to install Talos on Raspvberry Pi.

When it’s time to upgrade a machine, a new installer image can be generated using the new version of imager, and updating the system extension and overlay images to the matching versions. The custom installer image can now be used to upgrade Talos machine.

Example: AWS with Imager

Talos is installed on AWS from a disk image (AWS AMI), so only a single boot asset is required.

Let’s assume we want to boot Talos on AWS with gvisor container runtime system extension.

First, let’s lookup extension images for the gvisor container runtime in the extensions repository:

$ crane export ghcr.io/siderolabs/extensions:v1.8.0-alpha.0 | tar x -O image-digests | grep gvisor
ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e

Next, let’s generate AWS disk image with that system extension:

$ docker run --rm -t -v $PWD/_out:/out -v /dev:/dev --privileged ghcr.io/siderolabs/imager:v1.8.0-alpha.0 aws --system-extension-image ghcr.io/siderolabs/gvisor:20231214.0-v1.8.0-alpha.0@sha256:548b2b121611424f6b1b6cfb72a1669421ffaf2f1560911c324a546c7cee655e
...
output asset path: /out/aws-amd64.raw
compression done: /out/aws-amd64.raw.xz

Now the _out/aws-amd64.raw.xz contains the customized Talos AWS disk image which can be uploaded as an AMI to the AWS.

If the AWS machine is later going to be upgraded to a new version of Talos (or a new set of system extensions), generate a customized installer image following the steps above, and upgrade Talos to that installer image.

Example: Assets with system extensions from image tarballs with Imager

Some advanced features of imager are currently not exposed via command line arguments like --system-extension-image. To access them nonetheless it is possible to supply imager with a profile.yaml instead.

Let’s use these advanced features to build a bare-metal installer using a system extension from a private registry. First use crane on a host with access to the private registry to export the extension image into a tarball.

crane export <your-private-registry>/<your-extension>:latest <your-extension>

When can then reference the tarball in a suitable profile.yaml for our intended architecture and output. In this case we want to build an amd64, bare-metal installer.

# profile.yaml
arch: amd64
platform: metal
secureboot: false
version: v1.8.0-alpha.0
input:
  kernel:
    path: /usr/install/amd64/vmlinuz
  initramfs:
    path: /usr/install/amd64/initramfs.xz
  baseInstaller:
    imageRef: ghcr.io/siderolabs/installer:v1.8.0-alpha.0
  systemExtensions:
    - tarballPath: <your-extension>  # notice we use 'tarballPath' instead of 'imageRef'
output:
  kind: installer
  outFormat: raw

To build the asset we pass profile.yaml to imager via stdin

$ cat profile.yaml | docker run --rm -i \
-v $PWD/_out:/out -v $PWD/<your-extension>:/<your-extension> \
ghcr.io/siderolabs/imager:v1.8.0-alpha.0 -

7 - Omni SaaS

Omni is a project created by the Talos team that has native support for Talos Linux.

Omni allows you to start with bare metal, virtual machines or a cloud provider, and create clusters spanning all of your locations, with a few clicks.

You provide the machines – edge compute, bare metal, VMs, or in your cloud account. Boot from an Omni Talos Linux image. Click to allocate to a cluster. That’s it!

  • Vanilla Kubernetes, on your machines, under your control.
  • Elegant UI for management and operations
  • Security taken care of – ties into your Enterprise ID provider
  • Highly Available Kubernetes API end point built in
  • Firewall friendly: manage Edge nodes securely
  • From single-node clusters to the largest scale
  • Support for GPUs and most CSIs.

The Omni SaaS is available to run locally, to support air-gapped security and data sovereignty concerns.

Omni handles the lifecycle of Talos Linux machines, provides unified access to the Talos and Kubernetes API tied to the identity provider of your choice, and provides a UI for cluster management and operations. Omni automates scaling the clusters up and down, and provides a unified view of the state of your clusters.

See more in the Omni documentation.

8 - talosctl

Install Talos Linux CLI

The client can be installed and updated via the Homebrew package manager for macOS and Linux. You will need to install brew and then you can install talosctl from the Sidero Labs tap.

brew install siderolabs/tap/talosctl

This will also keep your version of talosctl up to date with new releases. This homebrew tap also has formulae for omnictl if you need to install that package.

Note: Your talosctl version should match the version of Talos Linux you are running on a host. To install a specific version of talosctl with brew you can follow this github issue.

Alternative install

You can automatically install the correct version of talosctl for your operating system and architecture with an installer script. This script won’t keep your version updated with releases and you will need to re-run the script to download a new version.

curl -sL https://talos.dev/install | sh

This script will work on macOS, Linux, and WSL on Windows. It supports amd64 and arm64 architecture.

Manual and Windows install

All versions can be manually downloaded from the talos releases page including Linux, macOS, and Windows.

You will need to add the binary to a folder part of your executable $PATH to use it without providing the full path to the executable.

Updating the binary will be a manual process.